xamarin

Using Microsoft’s Extensions.DependencyInjection package in (Xamarin.Forms) MVVM applications (Part 2)

Using Microsoft’s Extensions.DependencyInjection package in (Xamarin.Forms) MVVM applications (Part 2)

The Key

Our goal is to add keyed registrations to the IServiceCollection, so we need a common denominator to build upon. As I was able to use a string with the SimpleIoc implementation of MVVMLight for years now, I decided to move on with that and created the following, very complex interface:

public interface IViewModelKey
{
    string Key { get; set; }
}

Every ViewModel that should be registered by Key needs to implement that interface from now on in my MVVM environment.

The Resolver

Back in the MVVMLight times, I was able to query the SimpleIoc registrations with the key I was searching for. In the Microsoft.Extensions.DependencyInjection world, things get a bit more complex. While there are different ways to solve the problem (there are some libraries extending the IServiceProvider with additional methods out there, for example), I decided to use the IServiceProvider itself and go down the resolver interface/implementation road.

Let’s have a look at the interface first:

public interface IViewModelByKeyResolver<T> where T : IViewModelKey
{
    public T GetViewModelByKey(string key);
}

Nothing too special here, just a generic implementation of the resolver interface with the requirement of the IViewModelKey implementation from above. This makes the usage pretty straight forward. The more important part here is the implementation, though. Let’s have a look at mine:

public class ViewModelByKeyResolver<T> : IViewModelByKeyResolver<T> where T : IViewModelKey
{
    private readonly IServiceProvider _serviceProvider;

    public ViewModelByKeyResolver(IServiceProvider serviceProvider)
        => _serviceProvider = serviceProvider;

    public T GetViewModelByKey(string key)
        => _serviceProvider.GetServices<T>().SingleOrDefault(vm => vm.Key == key);
}

The registration of the implementation will automatically inject the IServiceProvider instance at runtime for me here. The GetViewModelByKey method searches all registrations of the given type for the key and returns the desired instance.

Registering the Resolver and keyed ViewModels

The registration of the resolver is done like all the other registrations:

this.ServiceDescriptors.TryAddSingleton<IViewModelByKeyResolver<KeyedViewModel>, ViewModelByKeyResolver<KeyedViewModel>>();

Replace KeyedViewModel with your individual type that implements your key interface. That’s it.

For the registration of the KeyedViewModel instances, there is one thing to pay attention to, though. You cannot use the TryAdd{Lifetime} methods here for registration. Instead, just use the Add{Lifetime} method to register them. Here is a sample:

this.ServiceDescriptors.AddSingleton<KeyedViewModel>(new KeyedViewModel("Key1"));
this.ServiceDescriptors.AddSingleton<KeyedViewModel>(new KeyedViewModel("Key2"));
this.ServiceDescriptors.AddSingleton<KeyedViewModel>(new KeyedViewModel("Key3"));
this.ServiceDescriptors.AddSingleton<KeyedViewModel>(new KeyedViewModel("Key4"));
this.ServiceDescriptors.AddSingleton<KeyedViewModel>(new KeyedViewModel("Key5"));

If you know the keyed ViewModels already at the time of your app startup, you can add them right away and create the IServiceProvider instance as shown in my first post. In most cases, however, you will know the information of the keyed instances only at runtime. Luckily, my Xamarin.Forms implementation already has the solution built in. Here is a short reminder:

public ServiceCollection? ServiceDescriptors { get; private set; }

private IServiceProvider? _services;

public IServiceProvider? Services => _services ??= BuildServiceProvider();

public IServiceProvider? BuildServiceProvider(bool resetExisiting = false)
{
    if (this.ServiceDescriptors == null)
        throw new ArgumentNullException($"Please register your Services and ViewModels first with the {nameof(RegisterServices)} and {nameof(RegisterViewModels)} methods.");

    if (resetExisiting)
        _services = null;

    if (_services == null)
        _services = ServiceDescriptors.BuildServiceProvider();

    return _services;
}

The BuildServiceProvider method has an additional parameter that allows to reset the existing IServiceProvider. This way, I can keep my existing registrations and just add the new keyed ones dynamically. Please note that you may need to reinitialize your already registered and used ViewModels under certain circumstances after performing the reset.

Accessing a keyed ViewModel

Last but not least, I need to show you how to access a ViewModel by its key. Luckily, this is not that hard:

KeyedViewModel vm4 = IocManager.Current.Services.GetService<IViewModelByKeyResolver<KeyedViewModel>>().GetViewModelByKey("Key4");
KeyedViewModel vm2 = IocManager.Current.Services.GetService<IViewModelByKeyResolver<KeyedViewModel>>().GetViewModelByKey("Key2");

Conclusion

By switching to the CommunityToolkit.MVVM package and utilizing Microsoft’s Extension.DependencyInjection package together with it, my MVVM environment is ready for upcoming challenges like .NET MAUI. I will be able to use it on all .NET platforms and just need to adapt my Xamarin.Forms implementation to others (which I have done already for one of our internal tools at work in WPF). Even keyed ViewModel instance can be used similarly as before, as I showed you in this post.

As always, I hope this post will be helpful for some of you.

Until the next post, happy coding!

Posted by msicc in Dev Stories, Xamarin, 1 comment
Using Microsoft’s Extensions.DependencyInjection package in (Xamarin.Forms) MVVM applications (Part 1) [Updated]

Using Microsoft’s Extensions.DependencyInjection package in (Xamarin.Forms) MVVM applications (Part 1) [Updated]

As some of you might remember, I was always a big fan of the MVVMLight toolkit. As the later one is now deprecated and MAUI around, I took a look at the CommunityToolkit.Mvvm, which is officially the successor to MVVMLight.

As stated in the documentation of the new Toolkit, one could now use the Microsoft’s Extensions.DependencyInjection package for anything related to Inversion of Control (which used to be handled by the SimpleIoc implementation of MVVMLight before). Because this is also the built-in way for .NET 6 and web applications, I decided to adapt it already now for my Xamarin.Forms apps (especially my new one I am currently working on).

[Update] Nuget packages

Please note that while the toolkit’s source is now separated from the Windows CommunityToolkit, the documentation isn’t. This can be confusing (as it was for me). On top of that, there are now two Toolkit MVVM packages:

I thought I got it right when writing this blog post initially. After Brandon Minnick from Microsoft pointed me to the right package, I realized I was not. Up on further research, I found also this discussion in the GitHub repo, stating the one and only will be the CommunityToolkit package. Please use only this one if you are following my tutorials here. I updated all mentions of the Toolkit in this post accordingly.

Default IServiceProvider implementation

The toolkit has a default implementation for the IServiceProvider provided by the Extension.DependencyInjection package. You can read about it here in the documentation and see the source here on GitHub. It focuses heavily on thread safety, its usage is pretty strict, and it does not allow adding ViewModels dynamically. If you do not need stuff like this in your app, you’re probably fine using the Ioc.Default implementation of the toolkit.

Custom IServiceprovider implementation

In TwistReader, the application I am currently working on, I had my requirements easily resolved by the SimpleIoc implementation of the MVVMLight toolkit. With the Extensions.DependencyInjection package, I had to move on with a custom implementation, on which we will have a deeper look in this post. Before you move on reading, make sure you have read the documentation.

IIocManagerBase interface

Of course, I wanted my custom implementation to be reusable. So I extended my existing base interface that my applications need to implement:

public interface IIocManagerBase 
{
    IServiceProvider? Services { get; }
    ServiceCollection? ServiceDescriptors { get; }

    IServiceProvider? BuildServiceProvider(bool resetExisiting = false);

    void Initialize(bool useDefaultNavigationService = true);

    void RegisterServices(bool useDefaultNavigationService);

    void RegisterViewModels();
}

I added the ServiceDescriptors property as well as an IServiceProvider property including a method to (re)build the ServiceProvider if needed. Let’s continue by having a look at the Xamarin.Forms base implementation.

FormsIocManagerBase base class

Building up on the interface before, I created a base implementation for my Xamarin.Forms apps. Let’s go a bit into the details.

In the Initialize method, I am just calling the RegisterServices and the RegisterViewModels methods. One important thing to notice is that I am instantiating the ServiceDescriptors property in the RegisterViewModels method. I also add my default services already to collection there. The RegisterViewModels method remains empty in the base implementation.

public virtual void Initialize(bool useDefaultNavigationService = true)
{
    RegisterServices(useDefaultNavigationService);
    RegisterViewModels();
}

public virtual void RegisterServices(bool useDefaultNavigationService)
{
    this.ServiceDescriptors = new ServiceCollection();

    this.ServiceDescriptors.TryAddSingleton<IDialogService>(DependencyService.Get<IDialogService>());
    this.ServiceDescriptors.TryAddSingleton<IActionSheetService>(new ActionSheetService());

    if (useDefaultNavigationService)
        this.ServiceDescriptors.TryAddSingleton<INavigationService>(new NavigationService());
    else
        System.Diagnostics.Debug.WriteLine("***** DON'T FORGET TO REGISTER YOUR INavigationService INSTANCE(S)!  *****");
}

public virtual void RegisterViewModels()
{
}

Until I switched to CommunityToolkit.Mvvm, this was all I had in there (using SimpleIoc for service registrations). Now that I am using the Extensions.DependencyInjection package, there is some more work to do:

public ServiceCollection? ServiceDescriptors { get; private set; }

private IServiceProvider? _services;

public IServiceProvider? Services => _services ??= BuildServiceProvider();

public IServiceProvider? BuildServiceProvider(bool resetExisiting = false)
{
    if (this.ServiceDescriptors == null)
        throw new ArgumentNullException($"Please register your Services and ViewModels first with the {nameof(RegisterServices)} and {nameof(RegisterViewModels)} methods.");

    if (resetExisiting)
        _services = null;

    if (_services == null)
        _services = ServiceDescriptors.BuildServiceProvider();

    return _services;
}

The code is not that complex, but helps with the IServiceProvider instance handling. The BuildServiceProvider method has a reset flag that allows me to rebuild the provider at runtime. One scenario where we can use this one is for adding ViewModel registrations dynamically during the runtime of our app, but.

IocManager in-app implementation

The next code block shows a typical in-app implementation of my IocManager. You may have noticed I am using the TryAdd{Lifetime} methods already before when adding items to the ServiceCollection. This makes sure that I have always just one registration and does not throw an exception if I try to add it again. If you prefer the exception, just switch to the Add{Lifetime} version.

public class IocManager : FormsIocManagerBase
{
    private static IocManager _instance;

    public static IocManager Current => _instance ??= new IocManager();


    public override void Initialize(bool useDefaultNavigationService = true)
    {
        base.Initialize(useDefaultNavigationService);
    }

    public override void RegisterServices(bool useDefaultNavigationService)
    {
        base.RegisterServices(useDefaultNavigationService);

        this.ServiceDescriptors.TryAddSingleton<ITestService, TestService1>();
        this.ServiceDescriptors.TryAddScoped<ITestService, TestedTestService>();
    }

    public override void RegisterViewModels()
    {
        this.ServiceDescriptors.TryAddSingleton<MainViewModel>();
        this.ServiceDescriptors.TryAddSingleton<SecondaryViewModel>();
    }

    public MainViewModel MainVm => this.Services.GetRequiredService<MainViewModel>();
    public SecondaryViewModel SecondaryVm => this.Services.GetRequiredService<SecondaryViewModel>();
}

For my Xamarin.Forms applications, I always use the IocManager implementation as a singleton. This makes it pretty easy with the different lifetimes on all platforms. As you can see, there is nothing complicated in the registration process, I just add both my services and my ViewModels to the ServiceCollection.

I also have some convenience properties for the most important ViewModels that make Binding easier (as I tend to keep code behind files as clean as possible). If you need a service in another place in your app, and you are not using constructor injection (which gets automatically resolved by the Microsoft.Extensions.DepedencyInjection package), you can get the instance in the same way as I do with the ViewModel instances above.

Conclusion

Creating a custom IServiceProvider implementation is not that hard. The custom implementation allows one to recreate the IServiceProvider (handle with care!) if needed. In the next post, I will show you how to deal with keyed ViewModel instances when using the Extensions.DependencyInjection package.

Have you already used the Microsoft.Extensions.DependencyInjection package with Xamarin.Forms or other platforms (not web)? What are your experiences? If so, leave a comment or chat with me on Twitter!

As always, I hope this post is helpful for some of you.

Until the next post – happy coding, everyone!

Posted by msicc in Dev Stories, Xamarin, 3 comments
Use the iOS system colors in Xamarin.Forms (Updated)

Use the iOS system colors in Xamarin.Forms (Updated)

Update

After publishing this post, Gerald Versluis from Microsoft responded on Twitter with an interesting information on how to get the system colors into our ResourceDictionary without using the DependencyService:

I had a quick look at the NamedPlatformColor class, but noticed that the implementation in Xamarin.Forms is incomplete. Gerald will try to update them. Once that is done, I will update the library on Github and this post again.

Original version below:


Overview

Let me give you a short overview first. To achieve our goal to use the iOS system colors, we need just a few easy steps:

  1. Xamarin.Forms interface that defines the colors
  2. Xamarin.iOS implementation of that interface
  3. ResourceDictionary to make the colors available in XAML
  4. Merging this dictionary with the application’s resource
  5. Handling of the OnRequestedThemeChanged event

Now that the plan is clear, let’s go into details.

ISystemColors interface

We will use the Xamarin.Forms DependencyService to get the colors from iOS to Xamarin.Forms. Let’s create our common interface:

using Xamarin.Forms;

namespace [YOURNAMESPACEHERE]
{
    public interface ISystemColors
    {
        Color SystemRed { get; }
        Color SystemOrange { get; }
        Color SystemYellow { get; }
        Color SystemGreen { get; }
        Color SystemMint { get; }
        Color SystemTeal { get; }
        Color SystemCyan { get; }
        Color SystemBlue { get; }
        Color SystemIndigo { get; }
        Color SystemPurple { get; }
        Color SystemPink { get; }
        Color SystemBrown { get; }
        Color SystemGray { get; }
        Color SystemGray2 { get; }
        Color SystemGray3 { get; }
        Color SystemGray4 { get; }
        Color SystemGray5 { get; }
        Color SystemGray6 { get; }
        Color SystemLabel { get; }
        Color SecondaryLabel { get; }
        Color TertiaryLabel { get; }
        Color QuaternaryLabel { get; }
        Color Placeholder { get; }
        Color Separator { get; }
        Color OpaqueSeparator { get; }
        Color LinkColor { get; }
        Color FillColor { get; }
        Color SecondaryFillColor { get; }
        Color TertiaryFillColor { get; }
        Color QuaternaryFillColor { get; }
        Color SystemBackgroundColor { get; }
        Color SecondarySystemBackgroundColor { get; }
        Color TertiarySystemBackgroundColor { get; }
        Color SystemGroupedBackgroundColor { get; }
        Color SecondarySystemGroupedBackgroundColor { get; }
        Color TertiarySystemGroupedBackgroundColor { get; }
        Color DarkTextColor { get; }
        Color LightTextColor { get; }
    }
}

As we are not able to change any of the system colors, we are just defining getters in the interface.

The Xamarin.iOS platform implementation

The implementation is straight forward. We are implementing the interface and just get the values for each system color. The list is based on Apple’s documentation for human interface and UI element colors.

using [YOURNAMESPACEHERE];

using UIKit;

using Xamarin.Forms;
using Xamarin.Forms.Platform.iOS;

[assembly: Dependency(typeof(SystemColors))]
namespace [YOURNAMESPACEHERE]
{
    //https://developer.apple.com/design/human-interface-guidelines/ios/visual-design/color/
    //https://developer.apple.com/documentation/uikit/uicolor/ui_element_colors

    public class SystemColors : ISystemColors
    {
        #region System Colors
        public Color SystemRed => UIColor.SystemRedColor.ToColor();
        public Color SystemOrange => UIColor.SystemOrangeColor.ToColor();
        public Color SystemYellow => UIColor.SystemYellowColor.ToColor();
        public Color SystemGreen => UIColor.SystemGreenColor.ToColor();
        public Color SystemMint => UIColor.SystemMintColor.ToColor();
        public Color SystemTeal => UIColor.SystemTealColor.ToColor();
        public Color SystemCyan => UIColor.SystemCyanColor.ToColor();
        public Color SystemBlue => UIColor.SystemBlueColor.ToColor();
        public Color SystemIndigo => UIColor.SystemIndigoColor.ToColor();
        public Color SystemPurple => UIColor.SystemPurpleColor.ToColor();
        public Color SystemPink => UIColor.SystemPinkColor.ToColor();
        public Color SystemBrown => UIColor.SystemBrownColor.ToColor();


        public Color SystemGray => UIColor.SystemGrayColor.ToColor();
        public Color SystemGray2 => UIColor.SystemGray2Color.ToColor();
        public Color SystemGray3 => UIColor.SystemGray3Color.ToColor();
        public Color SystemGray4 => UIColor.SystemGray4Color.ToColor();
        public Color SystemGray5 => UIColor.SystemGray5Color.ToColor();
        public Color SystemGray6 => UIColor.SystemGray6Color.ToColor();
        #endregion

        #region UI Element Colors
        public Color SystemLabel => UIColor.LabelColor.ToColor();
        public Color SecondaryLabel => UIColor.SecondaryLabelColor.ToColor();
        public Color TertiaryLabel => UIColor.TertiaryLabelColor.ToColor();
        public Color QuaternaryLabel => UIColor.QuaternaryLabelColor.ToColor();
        public Color Placeholder => UIColor.PlaceholderTextColor.ToColor();
        public Color Separator => UIColor.SeparatorColor.ToColor();
        public Color OpaqueSeparator => UIColor.SeparatorColor.ToColor();
        public Color LinkColor => UIColor.SeparatorColor.ToColor();

        public Color FillColor => UIColor.SystemFillColor.ToColor();
        public Color SecondaryFillColor => UIColor.SecondarySystemFillColor.ToColor();
        public Color TertiaryFillColor => UIColor.TertiarySystemFillColor.ToColor();
        public Color QuaternaryFillColor => UIColor.QuaternarySystemFillColor.ToColor();

        public Color SystemBackgroundColor => UIColor.SystemBackgroundColor.ToColor();
        public Color SecondarySystemBackgroundColor => UIColor.SecondarySystemBackgroundColor.ToColor();
        public Color TertiarySystemBackgroundColor => UIColor.TertiarySystemBackgroundColor.ToColor();

        public Color SystemGroupedBackgroundColor => UIColor.SystemGroupedBackgroundColor.ToColor();
        public Color SecondarySystemGroupedBackgroundColor => UIColor.SecondarySystemGroupedBackgroundColor.ToColor();
        public Color TertiarySystemGroupedBackgroundColor => UIColor.TertiarySystemGroupedBackgroundColor.ToColor();

        public Color DarkTextColor => UIColor.DarkTextColor.ToColor();
        public Color LightTextColor => UIColor.LightTextColor.ToColor();

        #endregion
    }
}

Do not forget to add the Dependency attribute on top of the implementation, otherwise it won’t work.

The ResourceDictionary

As I prefer defining my UI in XAML in Xamarin.Forms, I naturally want those colors to be available there as well. This can be done by loading the colors into a ResourceDictionary. As you might remember, I prefer codeless ResourceDictionary implementations. This time, however, we need the code-behind file to make the ResourceDictionary work for us.

First, add a new ResourceDictionary:

Add_ResourceDictionary_XAML

Then, in the code-behind file, we are using the DependencyService of Xamarin.Forms to add the colors to the ResourceDictionary:

using Xamarin.Forms;
using Xamarin.Forms.Xaml;

[assembly: XamlCompilation(XamlCompilationOptions.Compile)]
namespace [YOURNAMESPACEHERE]
{
    public partial class SystemColorsIosResourceDictionary
    {
        public SystemColorsIosResourceDictionary()
        {
            InitializeComponent();

            this.Add(nameof(ISystemColors.SystemRed), DependencyService.Get<ISystemColors>().SystemRed);
            this.Add(nameof(ISystemColors.SystemOrange), DependencyService.Get<ISystemColors>().SystemOrange);
            this.Add(nameof(ISystemColors.SystemYellow), DependencyService.Get<ISystemColors>().SystemYellow);
            this.Add(nameof(ISystemColors.SystemGreen), DependencyService.Get<ISystemColors>().SystemGreen);
            this.Add(nameof(ISystemColors.SystemMint), DependencyService.Get<ISystemColors>().SystemMint);
            this.Add(nameof(ISystemColors.SystemTeal), DependencyService.Get<ISystemColors>().SystemTeal);
            this.Add(nameof(ISystemColors.SystemCyan), DependencyService.Get<ISystemColors>().SystemCyan);
            this.Add(nameof(ISystemColors.SystemBlue), DependencyService.Get<ISystemColors>().SystemBlue);
            this.Add(nameof(ISystemColors.SystemIndigo), DependencyService.Get<ISystemColors>().SystemIndigo);
            this.Add(nameof(ISystemColors.SystemPurple), DependencyService.Get<ISystemColors>().SystemPurple);
            this.Add(nameof(ISystemColors.SystemPink), DependencyService.Get<ISystemColors>().SystemPink);
            this.Add(nameof(ISystemColors.SystemBrown), DependencyService.Get<ISystemColors>().SystemBrown);


            this.Add(nameof(ISystemColors.SystemGray), DependencyService.Get<ISystemColors>().SystemGray);
            this.Add(nameof(ISystemColors.SystemGray2), DependencyService.Get<ISystemColors>().SystemGray2);
            this.Add(nameof(ISystemColors.SystemGray3), DependencyService.Get<ISystemColors>().SystemGray3);
            this.Add(nameof(ISystemColors.SystemGray4), DependencyService.Get<ISystemColors>().SystemGray4);
            this.Add(nameof(ISystemColors.SystemGray5), DependencyService.Get<ISystemColors>().SystemGray5);
            this.Add(nameof(ISystemColors.SystemGray6), DependencyService.Get<ISystemColors>().SystemGray6);

            this.Add(nameof(ISystemColors.SystemLabel), DependencyService.Get<ISystemColors>().SystemLabel);
            this.Add(nameof(ISystemColors.SecondaryLabel), DependencyService.Get<ISystemColors>().SecondaryLabel);
            this.Add(nameof(ISystemColors.TertiaryLabel), DependencyService.Get<ISystemColors>().TertiaryLabel);
            this.Add(nameof(ISystemColors.QuaternaryLabel), DependencyService.Get<ISystemColors>().QuaternaryLabel);

            this.Add(nameof(ISystemColors.Placeholder), DependencyService.Get<ISystemColors>().Placeholder);
            this.Add(nameof(ISystemColors.Separator), DependencyService.Get<ISystemColors>().Separator);
            this.Add(nameof(ISystemColors.OpaqueSeparator), DependencyService.Get<ISystemColors>().OpaqueSeparator);
            this.Add(nameof(ISystemColors.LinkColor), DependencyService.Get<ISystemColors>().LinkColor);

            this.Add(nameof(ISystemColors.FillColor), DependencyService.Get<ISystemColors>().FillColor);
            this.Add(nameof(ISystemColors.SecondaryFillColor), DependencyService.Get<ISystemColors>().SecondaryFillColor);
            this.Add(nameof(ISystemColors.TertiaryFillColor), DependencyService.Get<ISystemColors>().TertiaryFillColor);
            this.Add(nameof(ISystemColors.QuaternaryFillColor), DependencyService.Get<ISystemColors>().QuaternaryFillColor);

            this.Add(nameof(ISystemColors.SystemBackgroundColor), DependencyService.Get<ISystemColors>().SystemBackgroundColor);
            this.Add(nameof(ISystemColors.SecondarySystemBackgroundColor), DependencyService.Get<ISystemColors>().SecondarySystemBackgroundColor);
            this.Add(nameof(ISystemColors.TertiarySystemBackgroundColor), DependencyService.Get<ISystemColors>().TertiarySystemBackgroundColor);

            this.Add(nameof(ISystemColors.SystemGroupedBackgroundColor), DependencyService.Get<ISystemColors>().SystemGroupedBackgroundColor);
            this.Add(nameof(ISystemColors.SecondarySystemGroupedBackgroundColor), DependencyService.Get<ISystemColors>().SecondarySystemGroupedBackgroundColor);
            this.Add(nameof(ISystemColors.TertiarySystemGroupedBackgroundColor), DependencyService.Get<ISystemColors>().TertiarySystemGroupedBackgroundColor);

            this.Add(nameof(ISystemColors.DarkTextColor), DependencyService.Get<ISystemColors>().DarkTextColor);
            this.Add(nameof(ISystemColors.LightTextColor), DependencyService.Get<ISystemColors>().LightTextColor);

        }
    }
}

That’s all for the implementation. Now let’s start having a look at how to use the whole code we wrote until now.

Merging the ResourceDictionary

In Xamarin.Forms, we are able to merge ResourceDictionary classes to make them available for the whole app or on view/page level only. I consider our above created dictionary as an app-level dictionary. On top, to make it reusable, I put all these classes in a separate multi-platform library, which you can find here on Github.

Please note that the syntax will be a little different if you implement the ResourceDictionary directly in your app. Using the library approach, you will merge the dictionary in this way in App.xaml:

<?xml version="1.0" encoding="utf-8" ?>
<Application
    x:Class="SystemColorsTest.App"
    xmlns="http://xamarin.com/schemas/2014/forms"
    xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
    xmlns:systemcolors="clr-namespace:MSiccDev.Libs.iOS.SystemColors;assembly=MSiccDev.Libs.iOS.SystemColors">
    <Application.Resources>
        <ResourceDictionary>
            <ResourceDictionary.MergedDictionaries>
                <systemcolors:SystemColorsIosResourceDictionary />
                <!--  more dictionaries here  -->
            </ResourceDictionary.MergedDictionaries>
        </ResourceDictionary>
    </Application.Resources>
</Application>

Responding to system theme changes

Even if I personally only change the system theme at runtime for testing themes in my apps, your users may do so frequently. Luckily, it is just a matter of handling an event to handle this scenario. In your App.xaml.cs file, register for the RequestedThemeChanged event within the constructor:

        public App()
        {
            InitializeComponent();

            Application.Current.RequestedThemeChanged += OnRequestedThemeChanged;

            this.MainVm = new MainViewModel();
            MainPage mainPage = new MainPage()
            {
                BindingContext = this.MainVm
            };

            MainPage = mainPage;
        }

As the system colors respond to the system theme change, we need to reload them to get these changes.

Within the OnRequestedThemeChanged method, we are first getting the actual merged ResourceDictionary instance. Then, we will remove this instance and register a new instance of the ResourceDictionary. This will lead to a full reload of the system colors from iOS into the app. Here is the code:

private void OnRequestedThemeChanged(object sender, AppThemeChangedEventArgs e)
{
    ResourceDictionary iosResourceDict = App.Current.Resources.MergedDictionaries.SingleOrDefault(dict => dict.GetType() == typeof(SystemColorsIosResourceDictionary));

    if (iosResourceDict != null)
    {
        App.Current.Resources.MergedDictionaries.Remove(iosResourceDict);
        App.Current.Resources.MergedDictionaries.Add(new SystemColorsIosResourceDictionary());
    }
}

That’s it, we are now ready to use the colors in XAML and our app adapts to system theme changes. Here is a sample XAML which I wrote to test the colors:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage
    x:Class="SystemColorsTest.MainPage"
    xmlns="http://xamarin.com/schemas/2014/forms"
    xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
    xmlns:local="clr-namespace:SystemColorsTest"
    x:DataType="local:MainViewModel"
    BackgroundColor="{DynamicResource SystemBackgroundColor}">

    <StackLayout>
        <Frame
            Padding="12,42,24,12"
            BackgroundColor="{DynamicResource SystemGray3}"
            CornerRadius="0">
            <Label
                FontSize="36"
                HorizontalTextAlignment="Center"
                Text="iOS SystemColors in XF"
                TextColor="{AppThemeBinding Dark={DynamicResource LightTextColor},
                                            Light={DynamicResource DarkTextColor}}" />
        </Frame>

        <ScrollView>
            <StackLayout BindableLayout.ItemsSource="{Binding SystemColors}">
                <BindableLayout.ItemTemplate>
                    <DataTemplate>
                        <Frame
                            Margin="6,3"
                            x:DataType="local:SystemColorViewModel"
                            BackgroundColor="{Binding Value}">
                            <Label Text="{Binding Name}" />
                        </Frame>
                    </DataTemplate>
                </BindableLayout.ItemTemplate>
            </StackLayout>
        </ScrollView>
    </StackLayout>
</ContentPage>

Please note that I use DynamicResource instead of StaticResource, even if some colors are static. Using DynamicResource forces the app to reload the colors, and there are some that change (like the SystemGray color palette).

Conclusion

Using the iOS system colors in Xamarin.Forms isn’t that complicated with this implementation. If you have more platforms, you could implement the same technique for the other platforms. As I am focusing on iOS for the moment, I just wrote that part. But who knows, maybe this will be extended in the future.

As always, I hope this post will be helpful for some of you.

Until the next post, happy coding, everyone!

Posted by msicc in Dev Stories, iOS, Xamarin, 5 comments
Dealing with the System UI on iOS in Xamarin.Forms

Dealing with the System UI on iOS in Xamarin.Forms

Having written a few applications with Xamarin.Forms by now, there was always the one part where you have to go platform specific. Over time, this part got easier as the collection of Platform-specifics in the Xamarin.Forms package was growing and growing.

This post will show (my) most used implementations leveraging the comfort of Platform-specifics as well as some other gotchas I collected over time. At the end of this post, you will also find a link to a demo project on my Github.

Large page title

Let’s start on top (literally). With iOS 11, Apple introduced large title’s that go back to small once the user is scrolling the content.

To make your app use this feature, you need two perform two steps. The first step is to tell your NavigationPage instance to prefer large titles. I often do this when creating my apps MainPage in App.xaml.cs:

public App()
{
    InitializeComponent();

    var navigationPage = new Xamarin.Forms.NavigationPage(new MainPage())
    {
        BarBackgroundColor = Color.DarkGreen,
        BarTextColor = Color.White
    };

    navigationPage.On<iOS>().SetPrefersLargeTitles(true);

    MainPage = navigationPage; 
}

This opens the door to show large titles on all pages that are managed by this NavigationPage instance. Sometimes, however, you need to actively tell the page it should use the large title (mostly happened to me in my base page implementation – never was able to nail it down to a specific point. I just opted in to always explicitly handle it on every page. In the sample application for this post, you will find a switch to toggle and untoggle the large title on the app’s MainPage:

On<iOS>().SetLargeTitleDisplay(_useLargeTitle ? 
LargeTitleDisplayMode.Always : 
LargeTitleDisplayMode.Never);

You can read more in the documentation.

StatusBar text color

Chances are high that we are customizing the BarBackgroundColor and BarTextColor properties. Of course, it makes absolutely sense that the StatusBar text follows the BarTextColor. Luckily, there is a Platform-specific for that as well:

if (this.Parent is Xamarin.Forms.NavigationPage navigationPage)
{
    navigationPage.On<iOS>().SetStatusBarTextColorMode(_statusBarTextFollowNavBarTextColor ? 
                             StatusBarTextColorMode.MatchNavigationBarTextLuminosity : 
                             StatusBarTextColorMode.DoNotAdjust);
}

The documentation ends here. However, I always need to add/change the Info.plist file as well:

<key>UIViewControllerBasedStatusBarAppearance</key>
<false/>

Only after adding this value the above-mentioned trick for the StatusBar text works.

On iOS, the NavigationBar has a separator on its bottom. If you want to hide this separator (which always disturbs the view), you can leverage another Platform-specific on your page:

if (this.Parent is Xamarin.Forms.NavigationPage navigationPage)
{
    navigationPage.On<iOS>().SetHideNavigationBarSeparator(_hideNavBarSeparator);
}

Home indicator visibility

All iPhones after the iPhone 8 (except the SE 2) do not have the home button. Instead, they have a home indicator on the bottom of the device (at least in app). If you are trying to set the color on it, I have bad news for you: you can’t (read on to learn why).

You can hide the indicator in your app, however. Just use this Platform-specific:

On<iOS>().SetPrefersHomeIndicatorAutoHidden(_hideHomeIndicator);

Home indicator background color

Hiding the home indicator is a hard measure. Most users do not even really recognize the indicator if it is incorporated into the app’s UI. To better understand how the home indicator works, I absolutely recommend to read Nathan Gitter’s great post on the topic.

The home indicator is adaptive to its surroundings. Most probably using a matching background color is all it needs to integrate the indicator nicely in your app(s).

Safe area

Thanks to the notch and the home indicator, putting content of our apps got trickier than before. However, Xamarin.Forms has you covered as well. All we have to do is to use the SetUseSafeArea Platform-specific – it will allow us to just use the area where we are not covering any System UI like the StatusBar or the home indicator:

On<iOS>().SetUseSafeArea(_useSafeArea);

Conclusion

Even though iOS has some specialties when it comes to the System UI, Xamarin.Forms has the most important tools built in to deal with them. I absolutely recommend creating a base page for your applications and set the most common specifics there. You can find the promised demo project here on Github. Like always, I hope this post is helpful for some of you.

Until the next post, happy coding, everyone!

Posted by msicc in Dev Stories, iOS, Xamarin, 2 comments
Fix ‘Xcode is not currently installed or could not be found’ error in Visual Studio 2019 for Mac

Fix ‘Xcode is not currently installed or could not be found’ error in Visual Studio 2019 for Mac

Every now and then, our IDE’s get some updates. This week, Visual Studio for MacOS got updated once again. After that, there was a separated Download initiated for the Xcode Command Line Tools. Two days later, Visual Studio started to greet me with this little message:

Xcode missing message VS Mac

Of course, I checked first that my installed version of Xcode is still working – it stopped already for me some time ago and I had to reinstall it. As you can see, that was not the case:

Xcode 12.5 about window

After doing some research on the web, others had similar issues. The problem was that the installation of the Xcode CLI tools has overridden the location of Xcode in Preferences – as you can see in the

The fix is easy, just paste /Applications/Xcode.app/ into the location field. Please note that the trailing slash is also important:

The dialog will immediately verify the existence of Xcode (at least in version 8.9.10). Just hit that restart button and you are once again good to go.

As always, I hope this short post will be helpful for some of you.

Until the next post – happy coding, everyone.

Posted by msicc in Dev Stories, iOS, Xamarin, 3 comments
Workaround to force Xamarin.Forms WebView to use a dark mode CSS for local content on Android

Workaround to force Xamarin.Forms WebView to use a dark mode CSS for local content on Android

Recently I updated my blog reader app to support the dark mode newer iOS and Android version support. While everything went smooth on iOS and the update is already live in the App Store, I had some more work to do on Android. One of the bigger problems: the WebView I use to view posts does not automatically switch to dark mode with Xamarin.Forms.

What’s causing this problem?

On part of the problem is that the WebView does not support the CSS query “prefers-color-scheme“. This works as intended on iOS however and is a problem specific to Android. You can refer to this issue on the Xamarin.Forms repository on Github.

Workaround

I am not sure if this problem will ever get solved by the Xamarin.Forms team. I tried to play around with some Javascript solutions that are floating around the web to keep just one CSS file. In the end however, I went with a Xamarin.Forms only approach following the KISS principle.

Xamarin.Forms has a working theme detection mechanism. Based on the return value of the Application.Current.RequestedTheme property, I am loading either the dark mode CSS file or the light mode CSS file (which is default in my case).

Shipping the CSS files is easy, we just need to add them to the Assets folder and set the Build action to AndroidAsset. This results in the following structure within the Android project:

All files that are shipped that way are accessible via the android_asset file uri:

<link rel="stylesheet" href="file:///android_asset/dummycss_light.css">

Now that everything is set up in the Android project, let’s head over to the Xamarin.Forms project. In the sample for this post, I am loading a local html file, while I generate the html dynamically in my blog reader app. The idea works the same way in both cases:

private async Task SetThemeAndLoadSource()
{
    _html = await LoadHtmlFromFileAsync();

    _html = Application.Current.RequestedTheme == OSAppTheme.Dark ?
            _html.Replace("light", "dark") :
            _html.Replace("dark", "light");

    this.TestWebView.Source = new HtmlWebViewSource() { Html = _html };
}

As you can see, I just override the light and dark part of the CSS file name I load into the HTML. That’s all the “magic” that needs to happen here. Just one little thing left to add – what if the user changes the theme while the app is running? Xamarin.Forms has the solution built in as well – just handle the RequestedThemeChanged event and override the file name again, followed by setting the HtmlWebViewSource again:

private async void Current_RequestedThemeChanged(object sender, AppThemeChangedEventArgs e)
{
    await SetThemeAndLoadSource();
}

Conclusion

As most of us are already used to, we sometimes need to find some workarounds when dealing with Xamarin.Forms. While this problem could have been solved with a bunch of Javascript and a custom CSS in a WebViewRenderer as well (I tried that, but didn’t like the complexity), you can achieve reliable results with the workaround above just in Xamarin.Forms.

You can find a working sample here on Github. As always, I hope this post will be helpful for some of you.

Until the next post, happy coding, everyone!
Posted by msicc in Android, Dev Stories, Xamarin, 1 comment
Scroll to any item in your Xamarin.Forms CollectionView from your ViewModel

Scroll to any item in your Xamarin.Forms CollectionView from your ViewModel

If you are working with collections in your app, chances are high you are going to want (or need) to scroll to a specific item at some point. CollectionView has the ScrollTo method that allows you to do so. If you are using MVVM in your app however, there is no built-in support to call this method.

My solution

My solution for this challenge consists of following parts:

  • a BindableProperty in an extended CollectionView class to bind the item we want to scroll to
  • a configuration class to control the scrolling behavior
  • a base interface with the configuration and two variants derived from it (one for ungrouped items, one for grouped ones)

Let’s have a look at the ScrollConfiguration class:

public class ScrollToConfiguration
{
    public bool Animated { get; set; } = true;

    public ScrollToPosition ScrollToPosition { get; set; } = ScrollToPosition.Center;
}

These two properties are used to tell our extended CollectionView how the scrolling to the item will behave. The above default values are my preferred ones, feel free to change them in your implementation.

Next, let us have a look at the base interface:

public interface IConfigurableScrollItem
{
    ScrollToConfiguration Config { get; set; }
}

Then we will define two additional interfaces which we are going to use later in our ViewModel:

    public interface IScrollItem : IConfigurableScrollItem
    {
    }

    public interface IGroupScrollItem : IConfigurableScrollItem
    {
        object GroupValue { get; set; }
    }

For a non-grouped CollectionView, we just need to implement IScrollItem. If we have groups, we’ll use IGroupScrollItem to add an object that identifies the group (following the Xamarin.Forms API here).

Extending CollectionView

Let’s connect the dots and implement an extended version of the CollectionView – to do so, create a new class and derive from it. I named mine CollectionViewEx (ingenious, right?).

To wrap things up, we now add a BindableProperty with a PropertyChanged handler to our CollectionViewEx that we can bind against, and which is, most importantly, calling the ScrollTo method of CollectionView.

Here is the full class:

public class CollectionViewEx : CollectionView
{
    public static BindableProperty ScrollToItemWithConfigProperty = BindableProperty.Create(nameof(ScrollToItemWithConfig), typeof(IConfigurableScrollItem), typeof(CollectionViewEx), default(IConfigurableScrollItem), BindingMode.Default, propertyChanged: OnScrollToItemWithConfigPropertyChanged);

    public IConfigurableScrollItem ScrollToItemWithConfig
    {
        get => (IConfigurableScrollItem)GetValue(ScrollToItemWithConfigProperty);
        set => SetValue(ScrollToItemWithConfigProperty, value);
    }

    private static void OnScrollToItemWithConfigPropertyChanged(BindableObject bindable, object oldValue, object newValue)
    {
        if (newValue == null)
            return;

        if (bindable is CollectionViewEx current)
        {
            if (newValue is IGroupScrollItem scrollToItemWithGroup)
            {
                if (scrollToItemWithGroup.Config == null)
                    scrollToItemWithGroup.Config = new ScrollToConfiguration();

                    current.ScrollTo(scrollToItemWithGroup, scrollToItemWithGroup.GroupValue, scrollToItemWithGroup.Config.ScrollToPosition, scrollToItemWithGroup.Config.Animated);

            }
            else if (newValue is IScrollItem scrollToItem)
            {
                if (scrollToItem.Config == null)
                    scrollToItem.Config = new ScrollToConfiguration();

                    current.ScrollTo(scrollToItem, null, scrollToItem.Config.ScrollToPosition, scrollToItem.Config.Animated);
            }
        }
    }
}

Let’s go through the code. The BindableProperty implementation should be common to most of us (if not, read up the docs). The most important part happens in the PropertyChanged handler.

By allowing the value of the BindableProperty to be null, we can reset the item and scroll to the same item again if necessary. Because IScrollItem as well as IGroupScrollItem derive from IConfigurableScrollItem, we can handle them both in one method. To make sure there is a default ScrollToConfiguration, I am checking the Config property for null – in case it is (because I forgot it), there is at least the default. In the end, I am scrolling to the Item in the CollectionView using the ScrollTo method.

The ViewModel(s) and Binding

Here is one of the (simple) ViewModels from the sample application for this post:

public class ItemViewModel : ViewModelBase, IScrollItem
{
    public ItemViewModel()
    {
        this.Config = new ScrollToConfiguration();
    }

    public string Text { get; set; }

    public int Number { get; set; }

    public ScrollToConfiguration Config { get; set; }
}

Now in the parent ViewModel, we just add another property that we can use to bind against the CollectionViewEx‘s ScrollToItemWithConfig property. The Binding is straight forward:

<controls:CollectionViewEx
    Grid.Row="3"
    Margin="6"
    ItemsSource="{Binding ScrollableItems}"
    ScrollToItemWithConfig="{Binding ScrollToVm}"
    SelectedItem="{Binding SelectedItemVm, Mode=TwoWay}"
    SelectionMode="Single">
    <controls:CollectionViewEx.ItemTemplate>
        <DataTemplate>
            <Grid>
                <Label Margin="5,10" Text="{Binding Text}" />
            </Grid>
        </DataTemplate>
    </controls:CollectionViewEx.ItemTemplate>
</controls:CollectionViewEx>

The result of this whole exercise looks like this:

Conclusion

Even if the CollectionView control in Xamarin.Forms provides a whole bunch of optimized functionalities over ListView, there are some scenarios that require additional work. Luckily, it isn’t that hard to extend the CollectionView. Scrolling to a precise ViewModel is easy with the code above. Of course, I created also a sample Github repo.

As always, I hope this post will be helpful for some of you.

Until the next post, happy coding, everyone!
Posted by msicc in Dev Stories, Xamarin, 1 comment
Code Snippets for Xamarin.Forms BindableProperty

Code Snippets for Xamarin.Forms BindableProperty

If you haven’t heard about the #XamarinMonth before, you should either click on the hashtag or read Luis’ blog post where he introduces the topic. At the end of his post, you will also find a link to all the contributions.

Why Code Snippets?

Code snippets make it easier to reuse code you write repeatedly during your dev life. For Xamarin Forms, there are no “built-in” snippets, so I decided to start creating my own snippets some time ago. If you want to get started, have a look at the docs.

The Snippets

If you ever wrote a custom control or an Effect for Xamarin Forms, chances are high you also used the BindableProperty functionality. I got tired of remembering the syntax, so I decided to write some snippets for it:

  • BindableProperty (bindp)
  • BindableProperty with PropertyChanged handler (bindppc)
  • Attached BindableProperty (bindpa)
  • Attached BindableProperty with PropertyChanged handler (bindpapc)

You can download all of them from my Github repo.

Once you insert (write shortcut, Tab, Tab) the snippet, you just need to define the name of the property as well as its type and hit enter – that’s it.

Tip: To make sure that the snippets show up with IntelliSense, go to Tools/Options, find the Text Editor section followed by the C# entry. Under IntelliSense, find the option for ‘Snippet behavior‘ and choose ‘Always include snippets‘.

Conclusion

Snippets can save a lot of time. Luckily, the implementation is not that difficult (see docs link above). As always, I hope this post is helpful for some of you.

Until the next post, happy coding, everyone!
Posted by msicc in Dev Stories, Xamarin, 0 comments
Sending push notifications to your Xamarin app from WordPress with Azure, Part II – the Function

Sending push notifications to your Xamarin app from WordPress with Azure, Part II – the Function

First, let’s have a look at the lineup of this series once again:

  • Preparing your WordPress (blog/site)
  • Preparing the Azure Function and connect the Webhook (this post)
  • Preparing the Notification Hub
  • Send the notification to Android
  • Send the notification to iOS
  • Adding in Xamarin.Forms

Creating a new Azure Function in Visual Studio

The most simple approach to create a new Azure Function (if you already have an Azure account) is adding a new project to your Xamarin solution:

After the project is loaded, double click on the .csproj file in the Solution Explorer to open the file for editing it. Make sure you have the following two PropertyGroup entries:

  <PropertyGroup>
    <TargetFramework>net461</TargetFramework>
    <AzureFunctionsVersion>v1</AzureFunctionsVersion>
  </PropertyGroup>
  <ItemGroup>
    <!--DO NOT UPDATE THE AZURE PACKAGES, IT WILL BREAK EVERYTHING!!!!-->
    <PackageReference Include="Microsoft.Azure.NotificationHubs" Version="1.0.9" />
    <PackageReference Include="Microsoft.Azure.WebJobs.Extensions.NotificationHubs" Version="1.3.0" />
    <PackageReference Include="Microsoft.NET.Sdk.Functions" Version="1.0.31" />
    <PackageReference Include="Newtonsoft.Json" Version="9.0.1" />
  </ItemGroup>

You may notice that I made an all caps comment into the second PropertyGroup entry. As I am using a v1 Function, these are the latest packages that I am able to use. They are doing their job, and allow us to use an easy way to bind the Function to the Azure NotificationHub , which we are going to implement in the next post. I delayed updating the whole setup to use a v2 function intentionally at this point.

Processing the Webhook payload

In order to be able to process the payload (remember, we are getting a JSON string) from our WordPress Webhook, we need to deserialize it. Let’s create the class that holds all information about it:

using Newtonsoft.Json;

namespace NewPostHandler
{
    public class PublishedPostNotification
    {
        [JsonProperty("id")]
        [JsonConverter(typeof(StringToLongConverter))]
        public long Id { get; set; }

        [JsonProperty("title")]
        public string Title { get; set; }

        [JsonProperty("status")]
        public string Status { get; set; }

        [JsonProperty("featured_media")]
        public string FeaturedMedia { get; set; }
    }
}

The class gets it pretty straight forward, we will use this implementation as-is for the payload we are sending to Android later on. The use of the StringToLongConverter is optional. For completeness, here is the implementation:

using Newtonsoft.Json;
using System;

namespace NewPostHandler
{
    public class StringToLongConverter : JsonConverter
    {
        public override bool CanConvert(Type t) => t == typeof(long) || t == typeof(long?);

        public override object ReadJson(JsonReader reader, Type t, object existingValue, JsonSerializer serializer)
        {
            if (reader.TokenType == JsonToken.Null) return default(long);
            var value = serializer.Deserialize<string>(reader);
            if (long.TryParse(value, out var l))
            {
                return l;
            }

            return default(long);
        }

        public override void WriteJson(JsonWriter writer, object untypedValue, JsonSerializer serializer)
        {
            if (untypedValue == null)
            {
                serializer.Serialize(writer, null);
                return;
            }
            var value = (long)untypedValue;
            serializer.Serialize(writer, value.ToString());
            return;
        }

        public static readonly StringToLongConverter Instance = new StringToLongConverter();
    }
}

Now that we prepared our data transferring object, it is time to finally have a look at the processor code.

[FunctionName("HandleNewPostHook")]
public static async Task<HttpResponseMessage> Run([HttpTrigger(AuthorizationLevel.Function, "post", Route = null)]HttpRequestMessage req, TraceWriter log)
{
    _log = log;
    _log.Info("arrived at 'HandleNewPostHook' function trigger.");

    //ignoring any query parameters, only using POST body

    PublishedPostNotification result = null;

    try
    {
        _jsonSerializerSettings = new JsonSerializerSettings()
        {
            MetadataPropertyHandling = MetadataPropertyHandling.Ignore,
            DateParseHandling = DateParseHandling.None,
            Converters =
            {
                new IsoDateTimeConverter { DateTimeStyles = DateTimeStyles.AssumeUniversal },
                StringToLongConverter.Instance
            }
        };

        _jsonSerializer = JsonSerializer.Create(_jsonSerializerSettings);

        using (var stream = await req.Content.ReadAsStreamAsync())
        {
            using (var reader = new StreamReader(stream))
            {
                using (var jsonReader = new JsonTextReader(reader))
                {
                    result = _jsonSerializer.Deserialize<PublishedPostNotification>(jsonReader);
                }
            }
        }

        if (result == null)
        {
            _log.Error("There was an error processing the request (serialization result is NULL)");
            return req.CreateResponse(HttpStatusCode.BadRequest, "There was an error processing the post body");
        }

       //subject of the next post
      //await TriggerPushNotificationAsync(result);
    }
    catch (Exception ex)
    {
        _log.Error("There was an error processing the request", ex);
        return req.CreateResponse(HttpStatusCode.BadRequest, "There was an error processing the post body");
    }

    if (result.Id != default)
    {
        _log.Info($"initiated processing of published post with id {result.Id}");
        return req.CreateResponse(HttpStatusCode.OK, "Processing new published post...");
    }
    else
    {
        _log.Error("There was an error processing the request (cannot process result Id with default value)");
        return req.CreateResponse(HttpStatusCode.BadRequest, "There was an error processing (postId not valid)");
    }
}

Let’s go through the code. The first thing I want to know is if we ever enter the Function, so I log the entrance. The second step is setting up the JsonSerializer to deserialize the payload into the DTO class I created before.

There are several scenarios that I am handling and returning different responses. Ideally, we would run through and arrive at the TriggerPushNotificationAsync call, followed by a jump the ‘OK‘- response if the post id received from our Webhook is valid. During testing, however, I ran into other situations as well, where I return a ‘Bad Request‘ response with a hint that something went wrong.

The implementation of the TriggerPushNotificationAsync method is not shown in this post as it will be subject of the next post in this series.

Testing the code locally

One of the reasons I chose to start the Function in Visual Studio is its ability to debug it locally. If you don’t have the necessary tools installed, Visual Studio will prompt you to do so. After installing them, you’ll be able to follow along.

Once the service is running, we will be able to test our function. If you haven’t already heard about it, Postman will be the easiest tool for that. Copy the function url and paste it into the url field in Postman. Next, add a sample JSON payload to the body (settings: raw, JSON) and hit the ‘Send’ button:

If all goes well, Postman will give you a success response:

The Azure CLI will also write some output:

As you can see, all of our log entries were written to the CLI, plus some additional information from Azure itself. Don’t worry for the moment about the anonymous authorization state, this is just because we are running locally. In theory, we could already publish the function to Azure now. As we know that we will extend the Function in the next post, however, we will not do this right now.

Conclusion

As you can see, writing an Azure Function isn’t as complicated as it sounds. Visual Studio brings all the tools you need to get started pretty fast. The ability to test the Function code locally is another big advantage that comes with Visual Studio.

In the next post, we will configure the NotificationHub on Azure and extend our Function to call into it and fire the notifications.

Until the next post, happy coding, everyone!
Posted by msicc in Android, Azure, Dev Stories, iOS, Xamarin, 1 comment
Sending push notifications to your Xamarin app from WordPress with Azure, Part I [new series]

Sending push notifications to your Xamarin app from WordPress with Azure, Part I [new series]

Overview

Choosing the “right” solution for sending push notifications isn’t easy if you have a WordPress blog. There are quite a bunch of options to choose from, and the right one for you might differ from my decision. I am using the most generic solution – a Webhook that triggers an Azure Function, which triggers the notification via Azure Notification Hubs. This series will grow as follows:

  • Preparing your WordPress (blog/site) (this post)
  • Preparing the Azure Function and connect the Webhook
  • Preparing the Notification Hub
  • Send the notification to Android
  • Send the notification to iOS
  • Adding in Xamarin.Forms

The app implementations are very platform-specific, but it is quite easy to integrate the post notifications in a Xamarin.Forms app (which will be the last post in this series). If you want to see the whole integration already in action, feel free to download my blog reader app:

WordPress plugins for the win

If you have a self-hosted blog like I do, you may know that the plugin ecosystem is there to help you with a lot of things that WordPress hasn’t out of the box. While a WordPress-hosted site as Webhook integration without an additional plugin, we need one to create such a Webhook on a self-hosted WordPress blog. The plugin I am using is simply called “Notification” and can be found here.

To install the plugin, follow these simple steps:

  • choose “Plugins” on your WordPress dashboard
  • select “Add New” and type in “notification”
  • Hit the “Install Now” button
  • Activate the plugin

Exploring the options

Once you have installed and activated the plugin, you will have a new option in the dashboard menu. Let’s have a look at the options.

  • Notifications – this shows you a list of your currently active notifications
  • Add New Notification – lets you create a new notification
  • Extensions – the plugin allows you to extend your notifications with external services like Slack, Twitter or SendGrid to engage even more users. We do not need these for the webhook, however.
  • Settings – the control panel for the plugin – this is where we will be for the rest of this blog

Enabling the Webhook

On the Settings page, select the “CARRIERS” option. The plugin uses so-called carriers to send out the notifications. By default, the Email carrier is active. I do not need this one for the moment, so I deactivated it an activated the Webhook carrier instead:

Setting Post Triggers

The next step is to verify we have the trigger for posts active:

You can modify the other triggers as well, but for the moment, I am focusing just on posts. I am thinking about integrating comments in the future, which will allow even more interaction from within my app.

Add a new notification

Let’s create our first notification. Select the “Add New Notification” action, which will bring up this page:

Select the “Add New Carrier” option and add the Webhook carrier:

Next, select the Trigger for the Webhook. During development, I am using the saving draft option as it allows me to easily trigger a notification without annoying anyone:

This will enable the “Merge Tags” list on the right-hand side. To create the Webhook payload, we need to add some arguments (using the “Add argument” button). Tip: you can copy the merge tag by just clicking on it and paste it into the “Value” box:

Don’t forget to activate the JSON format – we do not want it to be sent as XML. Make sure the Carrier is enabled and hit the save button on the upper right.

Testing the Webhook

Now that we finished the setup of our Webhook, let’s test it. To do so, go to the “Settings” page again and select “DEBUGGING”. Check the “Enable Notification logging” box and click the “Save Changes” button:

To test the notification, just create a new blog post and save the draft. Go back to the “DEBUGGING” setting, where you will be presented a new Notification log entry. Expanding this log entry, you will see some common data about the notification:

If you scroll a bit further down, you will see the payload of the Webhook. Sadly, you won’t get the raw JSON string, but a structured overview of the payload:

Verify that the payload contains all the data you need and adjust the settings if necessary. Once that is done, we are ready to go to the next blog post (coming soon).

Conclusion

In this post, I showed you how to create a Webhook that will trigger our upcoming Azure Function. Thanks to the “Notification” plugin, the process is pretty straight forward. In the next post, we will have a look at the Azure Function that will handle the Webhook.

Until the next post, happy coding, everyone!

Posted by msicc in Android, Azure, Dev Stories, iOS, Xamarin, 1 comment