How to lock orientation at runtime on iOS 16 with .NET MAUI and Xamarin.Forms

How to lock orientation at runtime on iOS 16 with .NET MAUI and Xamarin.Forms

The old way

Before iOS 16, it was pretty easy to lock a Page into a certain orientation. It was basically just one line of code (if you don’t count the DependencyService boilerplate code in):

UIDevice.CurrentDevice.SetValueForKey(new NSNumber((int)UIInterfaceOrientation.Portrait), new NSString("orientation"));

By calling this method whenever the size of a page was allocated, we were able to lock the orientation at runtime with Xamarin.Forms. With iOS 16, this does no longer work – even on native iOS applications.

The new way

To understand the why of the new way, you have to understand the SceneDelegate architecture Apple introduced with iOS 13. Before continuing, you should read this blog post by Donny Wals, which explains it very detailed: Understanding the iOS 13 Scene Delegate – Donny Wals.

Now that we know that the SceneDelegate is, we can move on with our implementation.

Page implementation

Both Xamarin.Forms and .NET MAUI implement the SceneDelegate architecture. That’s why we can update our code similarly to what native iOS implementations look like:

var rootWindowScene = (UIApplication.SharedApplication.ConnectedScenes.ToArray()?.FirstOrDefault()) as UIWindowScene;

if (rootWindowScene == null)

rootWindowScene.RequestGeometryUpdate(new UIWindowSceneGeometryPreferencesIOS(UIInterfaceOrientationMask.Portrait),
error =>
    Debug.WriteLine("Error while attempting to lock orientation: {Error}", error.LocalizedDescription);

On top, we have to tell the underlying ViewControllers to update their orientation as well:

var rootViewController = UIApplication.SharedApplication.KeyWindow?.RootViewController;

if (rootViewController == null)


The ViewController can be informed via the SetNeedsUpdateOfSupportedInterfaceOrientations method that it needs to redraw its view. If we put this all together, we can have a reusable implementation for our DeviceOrientationService implementation:

private void SetOrientation(UIInterfaceOrientationMask uiInterfaceOrientationMask)
    var rootWindowScene = (UIApplication.SharedApplication.ConnectedScenes.ToArray()?.FirstOrDefault()) as UIWindowScene;
    if (rootWindowScene == null)
    var rootViewController = UIApplication.SharedApplication.KeyWindow?.RootViewController;

    if (rootViewController == null)
    rootWindowScene.RequestGeometryUpdate(new UIWindowSceneGeometryPreferencesIOS(uiInterfaceOrientationMask),
    error =>
        Debug.WriteLine("Error while attempting to lock orientation: {Error}", error.LocalizedDescription);

To keep our existing code for older iOS versions working as well. We now just check if we are on iOS 16 and call our new method, below we still can use our traditional way:

public void LockPortrait()
    if (UIDevice.CurrentDevice.CheckSystemVersion(16, 0))
        _applicationDelegate.CurrentLockedOrientation = UIInterfaceOrientationMask.Portrait;
        UIDevice.CurrentDevice.SetValueForKey(new NSNumber((int)UIInterfaceOrientation.Portrait), new NSString("orientation"));

This will, however, do nothing without the last, very important step. You may have noticed the CurrentLockedOrientation property on the application delegate member above.

Every time the application has to decide whether to rotate or not, the application:supportedInterfaceOrientationsForWindow: gets called to ask for the supported orientations. Only if the application and the ViewController agree on the supported orientations, the action will be executed.

Extending our AppDelegate

Just as on native iOS, we need to implement the method above in our AppDelegate. Xamarin and .NET MAUI do this via the Export attribute, which tells the compiler to override the eventually existing native implementation.

For my solution, I created a derived version of the FormsApplicationDelegate / MauiUIApplicationDelegate classes, passing the current desired UIInterfaceOrientationMask value to the CurrentLockedOrientation property. Finally, I implement the GetSupportedInterfaceOrientationsForWindow method and just return the value of the CurrentLockedOrientation property:

public abstract class AppDelegateEx : MauiUIApplicationDelegate
    public virtual UIInterfaceOrientationMask CurrentLockedOrientation { get; set; }

    //according to the Apple docs, Application and ViewController have to agree on the supported orientation, this forces it
    public virtual UIInterfaceOrientationMask GetSupportedInterfaceOrientationsForWindow(UIApplication application, UIWindow forWindow)
        => this.CurrentLockedOrientation;

Now we just make the AppDelegate derive from AppDelegateEx (or whatever you call it) to finish the implementation for the orientation lock. Finally, locking the orientation works also on iOS 16.


I created two samples – one for Xamarin.Forms and one for .NET MAUI. The sample work similar on both platforms, and I wrote the code in a reusable way. You can find the samples in the corresponding GitHub repo.


It took me some time to figure out why the traditional way of locking the orientation doesn’t work any longer. After some research and some trial-and-error coding, I was able to come up with a clean and easy-to use solution, which is also reusable. I also learned some new things, like how MAUI implements Scenes and ViewControllers and got a better understanding of the iOS application structure and lifecycle on newer OS versions.

As always, I hope this post will be helpful for some of you as well.

Until the next post, happy coding!

Helpful links:

Title Image created via Bing Create with AI

Posted by msicc in Dev Stories, iOS, MAUI, Xamarin, 2 comments
My annual review (2022) [Editorial]

My annual review (2022) [Editorial]

In the beginning of 2022, I would never have thought of such a turbulent year. After all, we went more or less over the pandemic, and there were at least some positive signs that were sparking some hope. Pretty fast, the year turned into a memorable one, but for very ugly reasons.

Ukraine war

Russia began a war in Ukraine. We all have to battle the consequences of this war. Because of the ongoing war, prices of living have raised in all areas, be it groceries, energy costs and also entertainment costs. No day passes by without getting notified about the horrible things Russian troops are doing in Ukraine. I still pray (and you should too, if you’re into that) for the war to be finally over soon.

Twitter take-over

The second impacting event was the take-over of Twitter by Elon Musk. While he made Tesla a profitable company by focusing on the product outcome and made space travel less expensive with SpaceX, he is currently about to destroy Twitter. While I still was somehow neutral back in April when the deal became more real, I lost hope for my favourite social network the day he fired half of the company’s staff.

At the time of the take-over, I was actively working on my app TwistReader, which was a reader app for Twitter lists. I had already a beta running on TestFlight when things began to turn bad on Twitter. After UniShare (which was in the process of being ported to Android and iOS when it died), I had to take the though decision to let go also this app. I cancelled the domain I bought for the app and shut down all Azure resources already. If someone wants to continue the project, I am open to talk about it.

TwistReader promotional image

This is now the second time I had to stop an app for social media. Ultimately, I decided I will not develop against any of the social networks from now on (even though I have several ideas to improve my social flow).

As we all know, things on Twitter aren’t becoming better. My presence on the bird site serves now solely as a guide to other social media I am active on. I decided to not delete my two main accounts, but to lock them for new followers, and stopped using the service. I am mostly active on Mastodon, followed by LinkedIn (although the later one needs some more attention).

NASA is flying to the moon again

Besides all the negative stuff, there were also some good news for all of us space fans. The NASA finally sent a space-ship to the moon again. They are playing the save game and did an unmanned launch, letting the capsule orbit the Moon and come back to Earth. They made some really awesome photos along the way, and the mission was a full success.

New blog series #CASBAN6

Besides working on TwistReader, I also started to port my portfolio website away from WordPress to a self written website in ASP.NET Core with Razor pages. The site itself is already published, with links to my apps in the stores, but the news section still needs a blog. I evaluated all the options, like existing CMS plugins and other blogging platforms.

In the end, I opted into learning something new by using some bits of what I already know – and I started my recent #CASBAN6 blog series about creating a serverless blog engine on Azure. This is now my main side project.

Other dev stuff

While I am focusing on the serverless blog engine, I also have some libraries I made and use internally for Xamarin.Forms that I need to port to .NET MAUI. Some parts can be easily removed and replaced with Essentials and CommunityToolkit. There is still plenty of code worth porting left, though.

At work, I broke up the internally used libraries to be more modular and finished implementing the service templates that use them. I also continued to push source control management within the team. Besides that, I wrote some interfaces for our customers that took advantage of these things, but needed additional items as well. Over all, I was able to use some of my learnings at work and vice versa.

I also decided to not cancel my Parallels subscription. I used it around 10 time throughout the year, which is not worth paying more than 100 bucks for the yearly licence.

Furthermore, I will use the freed budget to buy a Jetbrains Ultimate licence instead, which I started to use recently. The experience in writing code is far ahead of what Microsoft offers with Visual Studio on Mac, so I guess that’s a good investment.


If you have been following along for some time, you may know that I only became a non-smoker again (after 25 years of chain-smoking) two years ago. In terms of sports, I took part in three challenges this year (Run4Fun 6,8km, 10km at Winterthur marathon and Kyburglauf 2022 10.3 km (including 425 stairs just at the end of km 10). If you want to follow my running adventures, you can find me here on Strava.

Me running the 10 km at Winterthur Marathon 2022

Outlook into 2023

Next year, the roller coaster continues to ride. I will start a new role in March as a .NET mobile developer at Galliker Switzerland, which is one of the leading companies in logistics. They have a Xamarin.Forms code base and started the transition to .NET MAUI. There will be projects where I will have to do API and Web stuff as well, so this new position will help me to move towards my goal of becoming a full stack .NET developer as well. Another plus is that I am free to choose my preferred IDE – which will be most probably RIDER after my recent experiences with it.

Of course, I will continue to with my #CASBAN6 project as well. As I stated in my last post in the series, the Azure functions part is coming up next. I will have some posts on that topic alone, but I will also keep developing it further until the final product is ready to be used in production.

Besides that, I will start to port my Fishing Knots app to .NET MAUI, which will help me to learn the upgrade process and make the app ready for the future.

In terms of sports, I will continue with running, starting up with a focus on improving my average pace to get permanently below 5 min/km. On top of that, I want to run a half-marathon at the end of the next season. I will give runningCoach another try – hopefully they will be able to import my Strava results correctly this time.


What was your 2022 like? What are you all looking forward in 2023? Feel free to get in contact via my social media accounts or the comments section below.

What’s left is to wish all of you a

Merry Christmas and a Happy New Year!

Posted by msicc in Editorials, 0 comments
Using Microsoft’s Extensions.DependencyInjection package in (Xamarin.Forms) MVVM applications (Part 2)

Using Microsoft’s Extensions.DependencyInjection package in (Xamarin.Forms) MVVM applications (Part 2)

The Key

Our goal is to add keyed registrations to the IServiceCollection, so we need a common denominator to build upon. As I was able to use a string with the SimpleIoc implementation of MVVMLight for years now, I decided to move on with that and created the following, very complex interface:

public interface IViewModelKey
    string Key { get; set; }

Every ViewModel that should be registered by Key needs to implement that interface from now on in my MVVM environment.

The Resolver

Back in the MVVMLight times, I was able to query the SimpleIoc registrations with the key I was searching for. In the Microsoft.Extensions.DependencyInjection world, things get a bit more complex. While there are different ways to solve the problem (there are some libraries extending the IServiceProvider with additional methods out there, for example), I decided to use the IServiceProvider itself and go down the resolver interface/implementation road.

Let’s have a look at the interface first:

public interface IViewModelByKeyResolver<T> where T : IViewModelKey
    public T GetViewModelByKey(string key);

Nothing too special here, just a generic implementation of the resolver interface with the requirement of the IViewModelKey implementation from above. This makes the usage pretty straight forward. The more important part here is the implementation, though. Let’s have a look at mine:

public class ViewModelByKeyResolver<T> : IViewModelByKeyResolver<T> where T : IViewModelKey
    private readonly IServiceProvider _serviceProvider;

    public ViewModelByKeyResolver(IServiceProvider serviceProvider)
        => _serviceProvider = serviceProvider;

    public T GetViewModelByKey(string key)
        => _serviceProvider.GetServices<T>().SingleOrDefault(vm => vm.Key == key);

The registration of the implementation will automatically inject the IServiceProvider instance at runtime for me here. The GetViewModelByKey method searches all registrations of the given type for the key and returns the desired instance.

Registering the Resolver and keyed ViewModels

The registration of the resolver is done like all the other registrations:

this.ServiceDescriptors.TryAddSingleton<IViewModelByKeyResolver<KeyedViewModel>, ViewModelByKeyResolver<KeyedViewModel>>();

Replace KeyedViewModel with your individual type that implements your key interface. That’s it.

For the registration of the KeyedViewModel instances, there is one thing to pay attention to, though. You cannot use the TryAdd{Lifetime} methods here for registration. Instead, just use the Add{Lifetime} method to register them. Here is a sample:

this.ServiceDescriptors.AddSingleton<KeyedViewModel>(new KeyedViewModel("Key1"));
this.ServiceDescriptors.AddSingleton<KeyedViewModel>(new KeyedViewModel("Key2"));
this.ServiceDescriptors.AddSingleton<KeyedViewModel>(new KeyedViewModel("Key3"));
this.ServiceDescriptors.AddSingleton<KeyedViewModel>(new KeyedViewModel("Key4"));
this.ServiceDescriptors.AddSingleton<KeyedViewModel>(new KeyedViewModel("Key5"));

If you know the keyed ViewModels already at the time of your app startup, you can add them right away and create the IServiceProvider instance as shown in my first post. In most cases, however, you will know the information of the keyed instances only at runtime. Luckily, my Xamarin.Forms implementation already has the solution built in. Here is a short reminder:

public ServiceCollection? ServiceDescriptors { get; private set; }

private IServiceProvider? _services;

public IServiceProvider? Services => _services ??= BuildServiceProvider();

public IServiceProvider? BuildServiceProvider(bool resetExisiting = false)
    if (this.ServiceDescriptors == null)
        throw new ArgumentNullException($"Please register your Services and ViewModels first with the {nameof(RegisterServices)} and {nameof(RegisterViewModels)} methods.");

    if (resetExisiting)
        _services = null;

    if (_services == null)
        _services = ServiceDescriptors.BuildServiceProvider();

    return _services;

The BuildServiceProvider method has an additional parameter that allows to reset the existing IServiceProvider. This way, I can keep my existing registrations and just add the new keyed ones dynamically. Please note that you may need to reinitialize your already registered and used ViewModels under certain circumstances after performing the reset.

Accessing a keyed ViewModel

Last but not least, I need to show you how to access a ViewModel by its key. Luckily, this is not that hard:

KeyedViewModel vm4 = IocManager.Current.Services.GetService<IViewModelByKeyResolver<KeyedViewModel>>().GetViewModelByKey("Key4");
KeyedViewModel vm2 = IocManager.Current.Services.GetService<IViewModelByKeyResolver<KeyedViewModel>>().GetViewModelByKey("Key2");


By switching to the CommunityToolkit.MVVM package and utilizing Microsoft’s Extension.DependencyInjection package together with it, my MVVM environment is ready for upcoming challenges like .NET MAUI. I will be able to use it on all .NET platforms and just need to adapt my Xamarin.Forms implementation to others (which I have done already for one of our internal tools at work in WPF). Even keyed ViewModel instance can be used similarly as before, as I showed you in this post.

As always, I hope this post will be helpful for some of you.

Until the next post, happy coding!

Posted by msicc in Dev Stories, Xamarin, 1 comment
Using Microsoft’s Extensions.DependencyInjection package in (Xamarin.Forms) MVVM applications (Part 1) [Updated]

Using Microsoft’s Extensions.DependencyInjection package in (Xamarin.Forms) MVVM applications (Part 1) [Updated]

As some of you might remember, I was always a big fan of the MVVMLight toolkit. As the later one is now deprecated and MAUI around, I took a look at the CommunityToolkit.Mvvm, which is officially the successor to MVVMLight.

As stated in the documentation of the new Toolkit, one could now use the Microsoft’s Extensions.DependencyInjection package for anything related to Inversion of Control (which used to be handled by the SimpleIoc implementation of MVVMLight before). Because this is also the built-in way for .NET 6 and web applications, I decided to adapt it already now for my Xamarin.Forms apps (especially my new one I am currently working on).

[Update] Nuget packages

Please note that while the toolkit’s source is now separated from the Windows CommunityToolkit, the documentation isn’t. This can be confusing (as it was for me). On top of that, there are now two Toolkit MVVM packages:

I thought I got it right when writing this blog post initially. After Brandon Minnick from Microsoft pointed me to the right package, I realized I was not. Up on further research, I found also this discussion in the GitHub repo, stating the one and only will be the CommunityToolkit package. Please use only this one if you are following my tutorials here. I updated all mentions of the Toolkit in this post accordingly.

Default IServiceProvider implementation

The toolkit has a default implementation for the IServiceProvider provided by the Extension.DependencyInjection package. You can read about it here in the documentation and see the source here on GitHub. It focuses heavily on thread safety, its usage is pretty strict, and it does not allow adding ViewModels dynamically. If you do not need stuff like this in your app, you’re probably fine using the Ioc.Default implementation of the toolkit.

Custom IServiceprovider implementation

In TwistReader, the application I am currently working on, I had my requirements easily resolved by the SimpleIoc implementation of the MVVMLight toolkit. With the Extensions.DependencyInjection package, I had to move on with a custom implementation, on which we will have a deeper look in this post. Before you move on reading, make sure you have read the documentation.

IIocManagerBase interface

Of course, I wanted my custom implementation to be reusable. So I extended my existing base interface that my applications need to implement:

public interface IIocManagerBase 
    IServiceProvider? Services { get; }
    ServiceCollection? ServiceDescriptors { get; }

    IServiceProvider? BuildServiceProvider(bool resetExisiting = false);

    void Initialize(bool useDefaultNavigationService = true);

    void RegisterServices(bool useDefaultNavigationService);

    void RegisterViewModels();

I added the ServiceDescriptors property as well as an IServiceProvider property including a method to (re)build the ServiceProvider if needed. Let’s continue by having a look at the Xamarin.Forms base implementation.

FormsIocManagerBase base class

Building up on the interface before, I created a base implementation for my Xamarin.Forms apps. Let’s go a bit into the details.

In the Initialize method, I am just calling the RegisterServices and the RegisterViewModels methods. One important thing to notice is that I am instantiating the ServiceDescriptors property in the RegisterViewModels method. I also add my default services already to collection there. The RegisterViewModels method remains empty in the base implementation.

public virtual void Initialize(bool useDefaultNavigationService = true)

public virtual void RegisterServices(bool useDefaultNavigationService)
    this.ServiceDescriptors = new ServiceCollection();

    this.ServiceDescriptors.TryAddSingleton<IActionSheetService>(new ActionSheetService());

    if (useDefaultNavigationService)
        this.ServiceDescriptors.TryAddSingleton<INavigationService>(new NavigationService());
        System.Diagnostics.Debug.WriteLine("***** DON'T FORGET TO REGISTER YOUR INavigationService INSTANCE(S)!  *****");

public virtual void RegisterViewModels()

Until I switched to CommunityToolkit.Mvvm, this was all I had in there (using SimpleIoc for service registrations). Now that I am using the Extensions.DependencyInjection package, there is some more work to do:

public ServiceCollection? ServiceDescriptors { get; private set; }

private IServiceProvider? _services;

public IServiceProvider? Services => _services ??= BuildServiceProvider();

public IServiceProvider? BuildServiceProvider(bool resetExisiting = false)
    if (this.ServiceDescriptors == null)
        throw new ArgumentNullException($"Please register your Services and ViewModels first with the {nameof(RegisterServices)} and {nameof(RegisterViewModels)} methods.");

    if (resetExisiting)
        _services = null;

    if (_services == null)
        _services = ServiceDescriptors.BuildServiceProvider();

    return _services;

The code is not that complex, but helps with the IServiceProvider instance handling. The BuildServiceProvider method has a reset flag that allows me to rebuild the provider at runtime. One scenario where we can use this one is for adding ViewModel registrations dynamically during the runtime of our app, but.

IocManager in-app implementation

The next code block shows a typical in-app implementation of my IocManager. You may have noticed I am using the TryAdd{Lifetime} methods already before when adding items to the ServiceCollection. This makes sure that I have always just one registration and does not throw an exception if I try to add it again. If you prefer the exception, just switch to the Add{Lifetime} version.

public class IocManager : FormsIocManagerBase
    private static IocManager _instance;

    public static IocManager Current => _instance ??= new IocManager();

    public override void Initialize(bool useDefaultNavigationService = true)

    public override void RegisterServices(bool useDefaultNavigationService)

        this.ServiceDescriptors.TryAddSingleton<ITestService, TestService1>();
        this.ServiceDescriptors.TryAddScoped<ITestService, TestedTestService>();

    public override void RegisterViewModels()

    public MainViewModel MainVm => this.Services.GetRequiredService<MainViewModel>();
    public SecondaryViewModel SecondaryVm => this.Services.GetRequiredService<SecondaryViewModel>();

For my Xamarin.Forms applications, I always use the IocManager implementation as a singleton. This makes it pretty easy with the different lifetimes on all platforms. As you can see, there is nothing complicated in the registration process, I just add both my services and my ViewModels to the ServiceCollection.

I also have some convenience properties for the most important ViewModels that make Binding easier (as I tend to keep code behind files as clean as possible). If you need a service in another place in your app, and you are not using constructor injection (which gets automatically resolved by the Microsoft.Extensions.DepedencyInjection package), you can get the instance in the same way as I do with the ViewModel instances above.


Creating a custom IServiceProvider implementation is not that hard. The custom implementation allows one to recreate the IServiceProvider (handle with care!) if needed. In the next post, I will show you how to deal with keyed ViewModel instances when using the Extensions.DependencyInjection package.

Have you already used the Microsoft.Extensions.DependencyInjection package with Xamarin.Forms or other platforms (not web)? What are your experiences? If so, leave a comment or chat with me on Twitter!

As always, I hope this post is helpful for some of you.

Until the next post – happy coding, everyone!

Posted by msicc in Dev Stories, Xamarin, 4 comments
Use the iOS system colors in Xamarin.Forms (Updated)

Use the iOS system colors in Xamarin.Forms (Updated)


After publishing this post, Gerald Versluis from Microsoft responded on Twitter with an interesting information on how to get the system colors into our ResourceDictionary without using the DependencyService:

I had a quick look at the NamedPlatformColor class, but noticed that the implementation in Xamarin.Forms is incomplete. Gerald will try to update them. Once that is done, I will update the library on Github and this post again.

Original version below:


Let me give you a short overview first. To achieve our goal to use the iOS system colors, we need just a few easy steps:

  1. Xamarin.Forms interface that defines the colors
  2. Xamarin.iOS implementation of that interface
  3. ResourceDictionary to make the colors available in XAML
  4. Merging this dictionary with the application’s resource
  5. Handling of the OnRequestedThemeChanged event

Now that the plan is clear, let’s go into details.

ISystemColors interface

We will use the Xamarin.Forms DependencyService to get the colors from iOS to Xamarin.Forms. Let’s create our common interface:

using Xamarin.Forms;

    public interface ISystemColors
        Color SystemRed { get; }
        Color SystemOrange { get; }
        Color SystemYellow { get; }
        Color SystemGreen { get; }
        Color SystemMint { get; }
        Color SystemTeal { get; }
        Color SystemCyan { get; }
        Color SystemBlue { get; }
        Color SystemIndigo { get; }
        Color SystemPurple { get; }
        Color SystemPink { get; }
        Color SystemBrown { get; }
        Color SystemGray { get; }
        Color SystemGray2 { get; }
        Color SystemGray3 { get; }
        Color SystemGray4 { get; }
        Color SystemGray5 { get; }
        Color SystemGray6 { get; }
        Color SystemLabel { get; }
        Color SecondaryLabel { get; }
        Color TertiaryLabel { get; }
        Color QuaternaryLabel { get; }
        Color Placeholder { get; }
        Color Separator { get; }
        Color OpaqueSeparator { get; }
        Color LinkColor { get; }
        Color FillColor { get; }
        Color SecondaryFillColor { get; }
        Color TertiaryFillColor { get; }
        Color QuaternaryFillColor { get; }
        Color SystemBackgroundColor { get; }
        Color SecondarySystemBackgroundColor { get; }
        Color TertiarySystemBackgroundColor { get; }
        Color SystemGroupedBackgroundColor { get; }
        Color SecondarySystemGroupedBackgroundColor { get; }
        Color TertiarySystemGroupedBackgroundColor { get; }
        Color DarkTextColor { get; }
        Color LightTextColor { get; }

As we are not able to change any of the system colors, we are just defining getters in the interface.

The Xamarin.iOS platform implementation

The implementation is straight forward. We are implementing the interface and just get the values for each system color. The list is based on Apple’s documentation for human interface and UI element colors.


using UIKit;

using Xamarin.Forms;
using Xamarin.Forms.Platform.iOS;

[assembly: Dependency(typeof(SystemColors))]

    public class SystemColors : ISystemColors
        #region System Colors
        public Color SystemRed => UIColor.SystemRedColor.ToColor();
        public Color SystemOrange => UIColor.SystemOrangeColor.ToColor();
        public Color SystemYellow => UIColor.SystemYellowColor.ToColor();
        public Color SystemGreen => UIColor.SystemGreenColor.ToColor();
        public Color SystemMint => UIColor.SystemMintColor.ToColor();
        public Color SystemTeal => UIColor.SystemTealColor.ToColor();
        public Color SystemCyan => UIColor.SystemCyanColor.ToColor();
        public Color SystemBlue => UIColor.SystemBlueColor.ToColor();
        public Color SystemIndigo => UIColor.SystemIndigoColor.ToColor();
        public Color SystemPurple => UIColor.SystemPurpleColor.ToColor();
        public Color SystemPink => UIColor.SystemPinkColor.ToColor();
        public Color SystemBrown => UIColor.SystemBrownColor.ToColor();

        public Color SystemGray => UIColor.SystemGrayColor.ToColor();
        public Color SystemGray2 => UIColor.SystemGray2Color.ToColor();
        public Color SystemGray3 => UIColor.SystemGray3Color.ToColor();
        public Color SystemGray4 => UIColor.SystemGray4Color.ToColor();
        public Color SystemGray5 => UIColor.SystemGray5Color.ToColor();
        public Color SystemGray6 => UIColor.SystemGray6Color.ToColor();

        #region UI Element Colors
        public Color SystemLabel => UIColor.LabelColor.ToColor();
        public Color SecondaryLabel => UIColor.SecondaryLabelColor.ToColor();
        public Color TertiaryLabel => UIColor.TertiaryLabelColor.ToColor();
        public Color QuaternaryLabel => UIColor.QuaternaryLabelColor.ToColor();
        public Color Placeholder => UIColor.PlaceholderTextColor.ToColor();
        public Color Separator => UIColor.SeparatorColor.ToColor();
        public Color OpaqueSeparator => UIColor.SeparatorColor.ToColor();
        public Color LinkColor => UIColor.SeparatorColor.ToColor();

        public Color FillColor => UIColor.SystemFillColor.ToColor();
        public Color SecondaryFillColor => UIColor.SecondarySystemFillColor.ToColor();
        public Color TertiaryFillColor => UIColor.TertiarySystemFillColor.ToColor();
        public Color QuaternaryFillColor => UIColor.QuaternarySystemFillColor.ToColor();

        public Color SystemBackgroundColor => UIColor.SystemBackgroundColor.ToColor();
        public Color SecondarySystemBackgroundColor => UIColor.SecondarySystemBackgroundColor.ToColor();
        public Color TertiarySystemBackgroundColor => UIColor.TertiarySystemBackgroundColor.ToColor();

        public Color SystemGroupedBackgroundColor => UIColor.SystemGroupedBackgroundColor.ToColor();
        public Color SecondarySystemGroupedBackgroundColor => UIColor.SecondarySystemGroupedBackgroundColor.ToColor();
        public Color TertiarySystemGroupedBackgroundColor => UIColor.TertiarySystemGroupedBackgroundColor.ToColor();

        public Color DarkTextColor => UIColor.DarkTextColor.ToColor();
        public Color LightTextColor => UIColor.LightTextColor.ToColor();


Do not forget to add the Dependency attribute on top of the implementation, otherwise it won’t work.

The ResourceDictionary

As I prefer defining my UI in XAML in Xamarin.Forms, I naturally want those colors to be available there as well. This can be done by loading the colors into a ResourceDictionary. As you might remember, I prefer codeless ResourceDictionary implementations. This time, however, we need the code-behind file to make the ResourceDictionary work for us.

First, add a new ResourceDictionary:


Then, in the code-behind file, we are using the DependencyService of Xamarin.Forms to add the colors to the ResourceDictionary:

using Xamarin.Forms;
using Xamarin.Forms.Xaml;

[assembly: XamlCompilation(XamlCompilationOptions.Compile)]
    public partial class SystemColorsIosResourceDictionary
        public SystemColorsIosResourceDictionary()

            this.Add(nameof(ISystemColors.SystemRed), DependencyService.Get<ISystemColors>().SystemRed);
            this.Add(nameof(ISystemColors.SystemOrange), DependencyService.Get<ISystemColors>().SystemOrange);
            this.Add(nameof(ISystemColors.SystemYellow), DependencyService.Get<ISystemColors>().SystemYellow);
            this.Add(nameof(ISystemColors.SystemGreen), DependencyService.Get<ISystemColors>().SystemGreen);
            this.Add(nameof(ISystemColors.SystemMint), DependencyService.Get<ISystemColors>().SystemMint);
            this.Add(nameof(ISystemColors.SystemTeal), DependencyService.Get<ISystemColors>().SystemTeal);
            this.Add(nameof(ISystemColors.SystemCyan), DependencyService.Get<ISystemColors>().SystemCyan);
            this.Add(nameof(ISystemColors.SystemBlue), DependencyService.Get<ISystemColors>().SystemBlue);
            this.Add(nameof(ISystemColors.SystemIndigo), DependencyService.Get<ISystemColors>().SystemIndigo);
            this.Add(nameof(ISystemColors.SystemPurple), DependencyService.Get<ISystemColors>().SystemPurple);
            this.Add(nameof(ISystemColors.SystemPink), DependencyService.Get<ISystemColors>().SystemPink);
            this.Add(nameof(ISystemColors.SystemBrown), DependencyService.Get<ISystemColors>().SystemBrown);

            this.Add(nameof(ISystemColors.SystemGray), DependencyService.Get<ISystemColors>().SystemGray);
            this.Add(nameof(ISystemColors.SystemGray2), DependencyService.Get<ISystemColors>().SystemGray2);
            this.Add(nameof(ISystemColors.SystemGray3), DependencyService.Get<ISystemColors>().SystemGray3);
            this.Add(nameof(ISystemColors.SystemGray4), DependencyService.Get<ISystemColors>().SystemGray4);
            this.Add(nameof(ISystemColors.SystemGray5), DependencyService.Get<ISystemColors>().SystemGray5);
            this.Add(nameof(ISystemColors.SystemGray6), DependencyService.Get<ISystemColors>().SystemGray6);

            this.Add(nameof(ISystemColors.SystemLabel), DependencyService.Get<ISystemColors>().SystemLabel);
            this.Add(nameof(ISystemColors.SecondaryLabel), DependencyService.Get<ISystemColors>().SecondaryLabel);
            this.Add(nameof(ISystemColors.TertiaryLabel), DependencyService.Get<ISystemColors>().TertiaryLabel);
            this.Add(nameof(ISystemColors.QuaternaryLabel), DependencyService.Get<ISystemColors>().QuaternaryLabel);

            this.Add(nameof(ISystemColors.Placeholder), DependencyService.Get<ISystemColors>().Placeholder);
            this.Add(nameof(ISystemColors.Separator), DependencyService.Get<ISystemColors>().Separator);
            this.Add(nameof(ISystemColors.OpaqueSeparator), DependencyService.Get<ISystemColors>().OpaqueSeparator);
            this.Add(nameof(ISystemColors.LinkColor), DependencyService.Get<ISystemColors>().LinkColor);

            this.Add(nameof(ISystemColors.FillColor), DependencyService.Get<ISystemColors>().FillColor);
            this.Add(nameof(ISystemColors.SecondaryFillColor), DependencyService.Get<ISystemColors>().SecondaryFillColor);
            this.Add(nameof(ISystemColors.TertiaryFillColor), DependencyService.Get<ISystemColors>().TertiaryFillColor);
            this.Add(nameof(ISystemColors.QuaternaryFillColor), DependencyService.Get<ISystemColors>().QuaternaryFillColor);

            this.Add(nameof(ISystemColors.SystemBackgroundColor), DependencyService.Get<ISystemColors>().SystemBackgroundColor);
            this.Add(nameof(ISystemColors.SecondarySystemBackgroundColor), DependencyService.Get<ISystemColors>().SecondarySystemBackgroundColor);
            this.Add(nameof(ISystemColors.TertiarySystemBackgroundColor), DependencyService.Get<ISystemColors>().TertiarySystemBackgroundColor);

            this.Add(nameof(ISystemColors.SystemGroupedBackgroundColor), DependencyService.Get<ISystemColors>().SystemGroupedBackgroundColor);
            this.Add(nameof(ISystemColors.SecondarySystemGroupedBackgroundColor), DependencyService.Get<ISystemColors>().SecondarySystemGroupedBackgroundColor);
            this.Add(nameof(ISystemColors.TertiarySystemGroupedBackgroundColor), DependencyService.Get<ISystemColors>().TertiarySystemGroupedBackgroundColor);

            this.Add(nameof(ISystemColors.DarkTextColor), DependencyService.Get<ISystemColors>().DarkTextColor);
            this.Add(nameof(ISystemColors.LightTextColor), DependencyService.Get<ISystemColors>().LightTextColor);


That’s all for the implementation. Now let’s start having a look at how to use the whole code we wrote until now.

Merging the ResourceDictionary

In Xamarin.Forms, we are able to merge ResourceDictionary classes to make them available for the whole app or on view/page level only. I consider our above created dictionary as an app-level dictionary. On top, to make it reusable, I put all these classes in a separate multi-platform library, which you can find here on Github.

Please note that the syntax will be a little different if you implement the ResourceDictionary directly in your app. Using the library approach, you will merge the dictionary in this way in App.xaml:

<?xml version="1.0" encoding="utf-8" ?>
                <systemcolors:SystemColorsIosResourceDictionary />
                <!--  more dictionaries here  -->

Responding to system theme changes

Even if I personally only change the system theme at runtime for testing themes in my apps, your users may do so frequently. Luckily, it is just a matter of handling an event to handle this scenario. In your App.xaml.cs file, register for the RequestedThemeChanged event within the constructor:

        public App()

            Application.Current.RequestedThemeChanged += OnRequestedThemeChanged;

            this.MainVm = new MainViewModel();
            MainPage mainPage = new MainPage()
                BindingContext = this.MainVm

            MainPage = mainPage;

As the system colors respond to the system theme change, we need to reload them to get these changes.

Within the OnRequestedThemeChanged method, we are first getting the actual merged ResourceDictionary instance. Then, we will remove this instance and register a new instance of the ResourceDictionary. This will lead to a full reload of the system colors from iOS into the app. Here is the code:

private void OnRequestedThemeChanged(object sender, AppThemeChangedEventArgs e)
    ResourceDictionary iosResourceDict = App.Current.Resources.MergedDictionaries.SingleOrDefault(dict => dict.GetType() == typeof(SystemColorsIosResourceDictionary));

    if (iosResourceDict != null)
        App.Current.Resources.MergedDictionaries.Add(new SystemColorsIosResourceDictionary());

That’s it, we are now ready to use the colors in XAML and our app adapts to system theme changes. Here is a sample XAML which I wrote to test the colors:

<?xml version="1.0" encoding="utf-8" ?>
    BackgroundColor="{DynamicResource SystemBackgroundColor}">

            BackgroundColor="{DynamicResource SystemGray3}"
                Text="iOS SystemColors in XF"
                TextColor="{AppThemeBinding Dark={DynamicResource LightTextColor},
                                            Light={DynamicResource DarkTextColor}}" />

            <StackLayout BindableLayout.ItemsSource="{Binding SystemColors}">
                            BackgroundColor="{Binding Value}">
                            <Label Text="{Binding Name}" />

Please note that I use DynamicResource instead of StaticResource, even if some colors are static. Using DynamicResource forces the app to reload the colors, and there are some that change (like the SystemGray color palette).


Using the iOS system colors in Xamarin.Forms isn’t that complicated with this implementation. If you have more platforms, you could implement the same technique for the other platforms. As I am focusing on iOS for the moment, I just wrote that part. But who knows, maybe this will be extended in the future.

As always, I hope this post will be helpful for some of you.

Until the next post, happy coding, everyone!

Posted by msicc in Dev Stories, iOS, Xamarin, 5 comments
Dealing with the System UI on iOS in Xamarin.Forms

Dealing with the System UI on iOS in Xamarin.Forms

Having written a few applications with Xamarin.Forms by now, there was always the one part where you have to go platform specific. Over time, this part got easier as the collection of Platform-specifics in the Xamarin.Forms package was growing and growing.

This post will show (my) most used implementations leveraging the comfort of Platform-specifics as well as some other gotchas I collected over time. At the end of this post, you will also find a link to a demo project on my Github.

Large page title

Let’s start on top (literally). With iOS 11, Apple introduced large title’s that go back to small once the user is scrolling the content.

To make your app use this feature, you need two perform two steps. The first step is to tell your NavigationPage instance to prefer large titles. I often do this when creating my apps MainPage in App.xaml.cs:

public App()

    var navigationPage = new Xamarin.Forms.NavigationPage(new MainPage())
        BarBackgroundColor = Color.DarkGreen,
        BarTextColor = Color.White


    MainPage = navigationPage; 

This opens the door to show large titles on all pages that are managed by this NavigationPage instance. Sometimes, however, you need to actively tell the page it should use the large title (mostly happened to me in my base page implementation – never was able to nail it down to a specific point. I just opted in to always explicitly handle it on every page. In the sample application for this post, you will find a switch to toggle and untoggle the large title on the app’s MainPage:

On<iOS>().SetLargeTitleDisplay(_useLargeTitle ? 
LargeTitleDisplayMode.Always : 

You can read more in the documentation.

StatusBar text color

Chances are high that we are customizing the BarBackgroundColor and BarTextColor properties. Of course, it makes absolutely sense that the StatusBar text follows the BarTextColor. Luckily, there is a Platform-specific for that as well:

if (this.Parent is Xamarin.Forms.NavigationPage navigationPage)
    navigationPage.On<iOS>().SetStatusBarTextColorMode(_statusBarTextFollowNavBarTextColor ? 
                             StatusBarTextColorMode.MatchNavigationBarTextLuminosity : 

The documentation ends here. However, I always need to add/change the Info.plist file as well:


Only after adding this value the above-mentioned trick for the StatusBar text works.

On iOS, the NavigationBar has a separator on its bottom. If you want to hide this separator (which always disturbs the view), you can leverage another Platform-specific on your page:

if (this.Parent is Xamarin.Forms.NavigationPage navigationPage)

Home indicator visibility

All iPhones after the iPhone 8 (except the SE 2) do not have the home button. Instead, they have a home indicator on the bottom of the device (at least in app). If you are trying to set the color on it, I have bad news for you: you can’t (read on to learn why).

You can hide the indicator in your app, however. Just use this Platform-specific:


Home indicator background color

Hiding the home indicator is a hard measure. Most users do not even really recognize the indicator if it is incorporated into the app’s UI. To better understand how the home indicator works, I absolutely recommend to read Nathan Gitter’s great post on the topic.

The home indicator is adaptive to its surroundings. Most probably using a matching background color is all it needs to integrate the indicator nicely in your app(s).

Safe area

Thanks to the notch and the home indicator, putting content of our apps got trickier than before. However, Xamarin.Forms has you covered as well. All we have to do is to use the SetUseSafeArea Platform-specific – it will allow us to just use the area where we are not covering any System UI like the StatusBar or the home indicator:



Even though iOS has some specialties when it comes to the System UI, Xamarin.Forms has the most important tools built in to deal with them. I absolutely recommend creating a base page for your applications and set the most common specifics there. You can find the promised demo project here on Github. Like always, I hope this post is helpful for some of you.

Until the next post, happy coding, everyone!

Posted by msicc in Dev Stories, iOS, Xamarin, 2 comments
Fix ‘Xcode is not currently installed or could not be found’ error in Visual Studio 2019 for Mac

Fix ‘Xcode is not currently installed or could not be found’ error in Visual Studio 2019 for Mac

Every now and then, our IDE’s get some updates. This week, Visual Studio for MacOS got updated once again. After that, there was a separated Download initiated for the Xcode Command Line Tools. Two days later, Visual Studio started to greet me with this little message:

Xcode missing message VS Mac

Of course, I checked first that my installed version of Xcode is still working – it stopped already for me some time ago and I had to reinstall it. As you can see, that was not the case:

Xcode 12.5 about window

After doing some research on the web, others had similar issues. The problem was that the installation of the Xcode CLI tools has overridden the location of Xcode in Preferences – as you can see in the

The fix is easy, just paste /Applications/Xcode.app/ into the location field. Please note that the trailing slash is also important:

The dialog will immediately verify the existence of Xcode (at least in version 8.9.10). Just hit that restart button and you are once again good to go.

As always, I hope this short post will be helpful for some of you.

Until the next post – happy coding, everyone.

Posted by msicc in Dev Stories, iOS, Xamarin, 3 comments
Workaround to force Xamarin.Forms WebView to use a dark mode CSS for local content on Android

Workaround to force Xamarin.Forms WebView to use a dark mode CSS for local content on Android

Recently I updated my blog reader app to support the dark mode newer iOS and Android version support. While everything went smooth on iOS and the update is already live in the App Store, I had some more work to do on Android. One of the bigger problems: the WebView I use to view posts does not automatically switch to dark mode with Xamarin.Forms.

What’s causing this problem?

On part of the problem is that the WebView does not support the CSS query “prefers-color-scheme“. This works as intended on iOS however and is a problem specific to Android. You can refer to this issue on the Xamarin.Forms repository on Github.


I am not sure if this problem will ever get solved by the Xamarin.Forms team. I tried to play around with some Javascript solutions that are floating around the web to keep just one CSS file. In the end however, I went with a Xamarin.Forms only approach following the KISS principle.

Xamarin.Forms has a working theme detection mechanism. Based on the return value of the Application.Current.RequestedTheme property, I am loading either the dark mode CSS file or the light mode CSS file (which is default in my case).

Shipping the CSS files is easy, we just need to add them to the Assets folder and set the Build action to AndroidAsset. This results in the following structure within the Android project:

All files that are shipped that way are accessible via the android_asset file uri:

<link rel="stylesheet" href="file:///android_asset/dummycss_light.css">

Now that everything is set up in the Android project, let’s head over to the Xamarin.Forms project. In the sample for this post, I am loading a local html file, while I generate the html dynamically in my blog reader app. The idea works the same way in both cases:

private async Task SetThemeAndLoadSource()
    _html = await LoadHtmlFromFileAsync();

    _html = Application.Current.RequestedTheme == OSAppTheme.Dark ?
            _html.Replace("light", "dark") :
            _html.Replace("dark", "light");

    this.TestWebView.Source = new HtmlWebViewSource() { Html = _html };

As you can see, I just override the light and dark part of the CSS file name I load into the HTML. That’s all the “magic” that needs to happen here. Just one little thing left to add – what if the user changes the theme while the app is running? Xamarin.Forms has the solution built in as well – just handle the RequestedThemeChanged event and override the file name again, followed by setting the HtmlWebViewSource again:

private async void Current_RequestedThemeChanged(object sender, AppThemeChangedEventArgs e)
    await SetThemeAndLoadSource();


As most of us are already used to, we sometimes need to find some workarounds when dealing with Xamarin.Forms. While this problem could have been solved with a bunch of Javascript and a custom CSS in a WebViewRenderer as well (I tried that, but didn’t like the complexity), you can achieve reliable results with the workaround above just in Xamarin.Forms.

You can find a working sample here on Github. As always, I hope this post will be helpful for some of you.

Until the next post, happy coding, everyone!
Posted by msicc in Android, Dev Stories, Xamarin, 1 comment
Scroll to any item in your Xamarin.Forms CollectionView from your ViewModel

Scroll to any item in your Xamarin.Forms CollectionView from your ViewModel

If you are working with collections in your app, chances are high you are going to want (or need) to scroll to a specific item at some point. CollectionView has the ScrollTo method that allows you to do so. If you are using MVVM in your app however, there is no built-in support to call this method.

My solution

My solution for this challenge consists of following parts:

  • a BindableProperty in an extended CollectionView class to bind the item we want to scroll to
  • a configuration class to control the scrolling behavior
  • a base interface with the configuration and two variants derived from it (one for ungrouped items, one for grouped ones)

Let’s have a look at the ScrollConfiguration class:

public class ScrollToConfiguration
    public bool Animated { get; set; } = true;

    public ScrollToPosition ScrollToPosition { get; set; } = ScrollToPosition.Center;

These two properties are used to tell our extended CollectionView how the scrolling to the item will behave. The above default values are my preferred ones, feel free to change them in your implementation.

Next, let us have a look at the base interface:

public interface IConfigurableScrollItem
    ScrollToConfiguration Config { get; set; }

Then we will define two additional interfaces which we are going to use later in our ViewModel:

    public interface IScrollItem : IConfigurableScrollItem

    public interface IGroupScrollItem : IConfigurableScrollItem
        object GroupValue { get; set; }

For a non-grouped CollectionView, we just need to implement IScrollItem. If we have groups, we’ll use IGroupScrollItem to add an object that identifies the group (following the Xamarin.Forms API here).

Extending CollectionView

Let’s connect the dots and implement an extended version of the CollectionView – to do so, create a new class and derive from it. I named mine CollectionViewEx (ingenious, right?).

To wrap things up, we now add a BindableProperty with a PropertyChanged handler to our CollectionViewEx that we can bind against, and which is, most importantly, calling the ScrollTo method of CollectionView.

Here is the full class:

public class CollectionViewEx : CollectionView
    public static BindableProperty ScrollToItemWithConfigProperty = BindableProperty.Create(nameof(ScrollToItemWithConfig), typeof(IConfigurableScrollItem), typeof(CollectionViewEx), default(IConfigurableScrollItem), BindingMode.Default, propertyChanged: OnScrollToItemWithConfigPropertyChanged);

    public IConfigurableScrollItem ScrollToItemWithConfig
        get => (IConfigurableScrollItem)GetValue(ScrollToItemWithConfigProperty);
        set => SetValue(ScrollToItemWithConfigProperty, value);

    private static void OnScrollToItemWithConfigPropertyChanged(BindableObject bindable, object oldValue, object newValue)
        if (newValue == null)

        if (bindable is CollectionViewEx current)
            if (newValue is IGroupScrollItem scrollToItemWithGroup)
                if (scrollToItemWithGroup.Config == null)
                    scrollToItemWithGroup.Config = new ScrollToConfiguration();

                    current.ScrollTo(scrollToItemWithGroup, scrollToItemWithGroup.GroupValue, scrollToItemWithGroup.Config.ScrollToPosition, scrollToItemWithGroup.Config.Animated);

            else if (newValue is IScrollItem scrollToItem)
                if (scrollToItem.Config == null)
                    scrollToItem.Config = new ScrollToConfiguration();

                    current.ScrollTo(scrollToItem, null, scrollToItem.Config.ScrollToPosition, scrollToItem.Config.Animated);

Let’s go through the code. The BindableProperty implementation should be common to most of us (if not, read up the docs). The most important part happens in the PropertyChanged handler.

By allowing the value of the BindableProperty to be null, we can reset the item and scroll to the same item again if necessary. Because IScrollItem as well as IGroupScrollItem derive from IConfigurableScrollItem, we can handle them both in one method. To make sure there is a default ScrollToConfiguration, I am checking the Config property for null – in case it is (because I forgot it), there is at least the default. In the end, I am scrolling to the Item in the CollectionView using the ScrollTo method.

The ViewModel(s) and Binding

Here is one of the (simple) ViewModels from the sample application for this post:

public class ItemViewModel : ViewModelBase, IScrollItem
    public ItemViewModel()
        this.Config = new ScrollToConfiguration();

    public string Text { get; set; }

    public int Number { get; set; }

    public ScrollToConfiguration Config { get; set; }

Now in the parent ViewModel, we just add another property that we can use to bind against the CollectionViewEx‘s ScrollToItemWithConfig property. The Binding is straight forward:

    ItemsSource="{Binding ScrollableItems}"
    ScrollToItemWithConfig="{Binding ScrollToVm}"
    SelectedItem="{Binding SelectedItemVm, Mode=TwoWay}"
                <Label Margin="5,10" Text="{Binding Text}" />

The result of this whole exercise looks like this:


Even if the CollectionView control in Xamarin.Forms provides a whole bunch of optimized functionalities over ListView, there are some scenarios that require additional work. Luckily, it isn’t that hard to extend the CollectionView. Scrolling to a precise ViewModel is easy with the code above. Of course, I created also a sample Github repo.

As always, I hope this post will be helpful for some of you.

Until the next post, happy coding, everyone!
Posted by msicc in Dev Stories, Xamarin, 1 comment
Code Snippets for Xamarin.Forms BindableProperty

Code Snippets for Xamarin.Forms BindableProperty

If you haven’t heard about the #XamarinMonth before, you should either click on the hashtag or read Luis’ blog post where he introduces the topic. At the end of his post, you will also find a link to all the contributions.

Why Code Snippets?

Code snippets make it easier to reuse code you write repeatedly during your dev life. For Xamarin Forms, there are no “built-in” snippets, so I decided to start creating my own snippets some time ago. If you want to get started, have a look at the docs.

The Snippets

If you ever wrote a custom control or an Effect for Xamarin Forms, chances are high you also used the BindableProperty functionality. I got tired of remembering the syntax, so I decided to write some snippets for it:

  • BindableProperty (bindp)
  • BindableProperty with PropertyChanged handler (bindppc)
  • Attached BindableProperty (bindpa)
  • Attached BindableProperty with PropertyChanged handler (bindpapc)

You can download all of them from my Github repo.

Once you insert (write shortcut, Tab, Tab) the snippet, you just need to define the name of the property as well as its type and hit enter – that’s it.

Tip: To make sure that the snippets show up with IntelliSense, go to Tools/Options, find the Text Editor section followed by the C# entry. Under IntelliSense, find the option for ‘Snippet behavior‘ and choose ‘Always include snippets‘.


Snippets can save a lot of time. Luckily, the implementation is not that difficult (see docs link above). As always, I hope this post is helpful for some of you.

Until the next post, happy coding, everyone!
Posted by msicc in Dev Stories, Xamarin, 0 comments