data protection

Xamarin.Forms, Akavache and I: ensuring protection of sensitive data

Xamarin.Forms, Akavache and I: ensuring protection of sensitive data

Recap

Some of you might remember my posts about encryption for Android, iOS and Windows 10. If not, take a look here:

Xamarin Android: asymmetric encryption without any user input or hardcoded values

How to perform asymmetric encryption without user input/hardcoded values with Xamarin iOS

Using the built-in UWP data protection for data encryption

It is no coincidence that I wrote these three posts before starting with this Akavache series, as we’ll use those techniques to protect sensitive data with Akavache. So you might have a look first before you read on.

Creating a secure blob cache in Akavache

Akavache has a special type for saving sensitive data  – based on the interface ISecureBlobCache. The first step is to extend the IBlobCacheInstanceHelperinterface we implemented in the first post of this series:

    public interface IBlobCacheInstanceHelper
    {
        void Init();

        IBlobCache LocalMachineCache { get; set; }

        ISecureBlobCache SecretLocalMachineCache { get; set; }
    }

Of course, all three platform implementations of the IBlobCacheInstanceHelperinterface need to be updated as well. The code to add for all three platform is the same:

public ISecureBlobCache SecretLocalMachineCache { get; set; }     

private void GetSecretLocalMachineCache()
{
    var secretCache = new Lazy<ISecureBlobCache>(() =>
                                                 {
                                                     _filesystemProvider.CreateRecursive(_filesystemProvider.GetDefaultSecretCacheDirectory()).SubscribeOn(BlobCache.TaskpoolScheduler).Wait();
                                                     return new SQLiteEncryptedBlobCache(Path.Combine(_filesystemProvider.GetDefaultSecretCacheDirectory(), "secret.db"), new PlatformCustomAkavacheEncryptionProvider(), BlobCache.TaskpoolScheduler);
                                                 });

    this.SecretLocalMachineCache = secretCache.Value;
}

As we will use the same name for all platform implementations, that’s already all we have to do here.

Platform specific encryption provider

Implementing the platform specific code is nothing new. Way before I used Akavache, others have already implemented solutions. The main issue is that there is no platform implementation for Android and iOS (and maybe others). My solution is inspired by this blog post by Kent Boogart, which is (as far as I can see), also broadly accepted amongst the community. The only thing I disliked about it was the requirement for a password – which either would be something reversible or causing a (maybe) bad user experience.

Akavache provides the IEncryptionProviderinterface, which contains two methods. One for encryption, the other one for decryption. Those two methods are working with byte[]both for input and output. You should be aware and know how to convert your data to that.

Implementing the  IEncryptionProvider interface

The implementation of Akavache’s encryption interface is following the same principle on all three platforms.

  • provide a reference to the internal TaskpoolSchedulerin the constructor
  • get an instance of our platform specific encryption provider
  • get or create keys (Android and iOS)
  • provide helper methods that perform encryption/decryption

Let’s have a look at the platform implementations. I will show the full class implementation and remarking them afterwards.

Android

[assembly: Xamarin.Forms.Dependency(typeof(PlatformCustomAkavacheEncryptionProvider))]
namespace XfAkavacheAndI.Android.PlatformImplementations
{
    public class PlatformCustomAkavacheEncryptionProvider : IEncryptionProvider
    {
        private readonly IScheduler _scheduler;

        private static readonly string KeyStoreName = $"{BlobCache.ApplicationName.ToLower()}_secureStore";

        private readonly PlatformEncryptionKeyHelper _encryptionKeyHelper;

        private const string TRANSFORMATION = "RSA/ECB/PKCS1Padding";
        private IKey _privateKey = null;
        private IKey _publicKey = null;

        public PlatformCustomAkavacheEncryptionProvider()
        {
            _scheduler = BlobCache.TaskpoolScheduler ?? throw new ArgumentNullException(nameof(_scheduler), "Scheduler is null");

            _encryptionKeyHelper = new PlatformEncryptionKeyHelper(Application.Context, KeyStoreName);
            GetOrCreateKeys();
        }

        public IObservable<byte[]> DecryptBlock(byte[] block)
        {
            if (block == null)
            {
                throw new ArgumentNullException(nameof(block), "block cannot be null");
            }

            return Observable.Start(() => Decrypt(block), _scheduler);
        }

        public IObservable<byte[]> EncryptBlock(byte[] block)
        {
            if (block == null)
            {
                throw new ArgumentNullException(nameof(block), "block cannot be null");
            }

            return Observable.Start(() => Encrypt(block), _scheduler);
        }


        private void GetOrCreateKeys()
        {
            if (!_encryptionKeyHelper.KeysExist())
                _encryptionKeyHelper.CreateKeyPair();

            _privateKey = _encryptionKeyHelper.GetPrivateKey();
            _publicKey = _encryptionKeyHelper.GetPublicKey();
        }


        public byte[] Encrypt(byte[] rawBytes)
        {
            if (_publicKey == null)
            {
                throw new ArgumentNullException(nameof(_publicKey), "Public key cannot be null");
            }

            var cipher = Cipher.GetInstance(TRANSFORMATION);
            cipher.Init(CipherMode.EncryptMode, _publicKey);

            return cipher.DoFinal(rawBytes);
        }

        public byte[] Decrypt(byte[] encyrptedBytes)
        {
            if (_privateKey == null)
            {
                throw new ArgumentNullException(nameof(_privateKey), "Private key cannot be null");
            }

            var cipher = Cipher.GetInstance(TRANSFORMATION);
            cipher.Init(CipherMode.DecryptMode, _privateKey);

            return cipher.DoFinal(encyrptedBytes);
        }
    }

As you can see, I am getting Akavache’s  internal TaskpoolSchedulerin the constructor, like initial stated. Then, for this sample, I am using RSA encryption. The helper methods pretty much implement the same code like in the post about my KeyStore implementation. The only thing to do is to use these methods in the EncryptBlock and DecyrptBlock method implementations, which is done asynchronously via Observable.Start.

iOS

[assembly: Xamarin.Forms.Dependency(typeof(PlatformCustomAkavacheEncryptionProvider))]
namespace XfAkavacheAndI.iOS.PlatformImplementations
{
    public class PlatformCustomAkavacheEncryptionProvider : IEncryptionProvider
    {
        private readonly IScheduler _scheduler;

        private readonly PlatformEncryptionKeyHelper _encryptionKeyHelper;


        private SecKey _privateKey = null;
        private SecKey _publicKey  = null;

        public PlatformCustomAkavacheEncryptionProvider()
        {
            _scheduler = BlobCache.TaskpoolScheduler ??
                         throw new ArgumentNullException(nameof(_scheduler), "Scheduler is null");

            _encryptionKeyHelper = new PlatformEncryptionKeyHelper(BlobCache.ApplicationName.ToLower());
            GetOrCreateKeys();
        }

        public IObservable<byte[]> DecryptBlock(byte[] block)
        {
            if (block == null)
            {
                throw new ArgumentNullException(nameof(block), "block can't be null");
            }

            return Observable.Start(() => Decrypt(block), _scheduler);
        }

        public IObservable<byte[]> EncryptBlock(byte[] block)
        {
            if (block == null)
            {
                throw new ArgumentNullException(nameof(block), "block can't be null");
            }

            return Observable.Start(() => Encrypt(block), _scheduler);
        }


        private void GetOrCreateKeys()
        {
            if (!_encryptionKeyHelper.KeysExist())
                _encryptionKeyHelper.CreateKeyPair();

            _privateKey = _encryptionKeyHelper.GetPrivateKey();
            _publicKey = _encryptionKeyHelper.GetPublicKey();
        }

        private byte[] Encrypt(byte[] rawBytes)
        {
            if (_publicKey == null)
            {
                throw new ArgumentNullException(nameof(_publicKey), "Public key cannot be null");
            }

            var code = _publicKey.Encrypt(SecPadding.PKCS1, rawBytes, out var encryptedBytes);

            return code == SecStatusCode.Success ? encryptedBytes : null;
        }

        private byte[] Decrypt(byte[] encyrptedBytes)
        {
            if (_privateKey == null)
            {
                throw new ArgumentNullException(nameof(_privateKey), "Private key cannot be null");
            }

            var code = _privateKey.Decrypt(SecPadding.PKCS1, encyrptedBytes, out var decryptedBytes);

            return code == SecStatusCode.Success ? decryptedBytes : null;
        }

    }
}

The iOS implementation follows the same schema as the Android implementation. However, iOS uses the KeyChain, which makes the encryption helper methods itself different.

UWP

[assembly: Xamarin.Forms.Dependency(typeof(PlatformCustomAkavacheEncryptionProvider))]
namespace XfAkavacheAndI.UWP.PlatformImplementations
{
    public class PlatformCustomAkavacheEncryptionProvider : IEncryptionProvider
    {
        private readonly IScheduler _scheduler;

        private string _localUserDescriptor = "LOCAL=user";
        private string _localMachineDescriptor = "LOCAL=machine";

        public bool UseForAllUsers { get; set; } = false;

        public PlatformCustomAkavacheEncryptionProvider()
        {
            _scheduler = BlobCache.TaskpoolScheduler ??
                         throw new ArgumentNullException(nameof(_scheduler), "Scheduler is null");
        }

        public IObservable<byte[]> EncryptBlock(byte[] block)
        {
            if (block == null)
            {
                throw new ArgumentNullException(nameof(block), "block can't be null");
            }

            return Observable.Start(() => Encrypt(block).GetAwaiter().GetResult(), _scheduler);
        }

        public IObservable<byte[]> DecryptBlock(byte[] block)
        {
            if (block == null)
            {
                throw new ArgumentNullException(nameof(block), "block can't be null");
            }

            return Observable.Start(() => Decrypt(block).GetAwaiter().GetResult(), _scheduler);
        }


        public async Task<byte[]> Encrypt(byte[] data)
        {
            var provider = new DataProtectionProvider(UseForAllUsers ? _localMachineDescriptor : _localUserDescriptor);

            var contentBuffer = CryptographicBuffer.CreateFromByteArray(data);
            var contentInputStream = new InMemoryRandomAccessStream();
            var protectedContentStream = new InMemoryRandomAccessStream();

            //storing data in the stream
            IOutputStream outputStream = contentInputStream.GetOutputStreamAt(0);
            var dataWriter = new DataWriter(outputStream);
            dataWriter.WriteBuffer(contentBuffer);
            await dataWriter.StoreAsync();
            await dataWriter.FlushAsync();

            //reopening in input mode
            IInputStream encodingInputStream = contentInputStream.GetInputStreamAt(0);

            IOutputStream protectedOutputStream = protectedContentStream.GetOutputStreamAt(0);
            await provider.ProtectStreamAsync(encodingInputStream, protectedOutputStream);
            await protectedOutputStream.FlushAsync();

            //verify that encryption happened
            var inputReader = new DataReader(contentInputStream.GetInputStreamAt(0));
            var protectedReader = new DataReader(protectedContentStream.GetInputStreamAt(0));

            await inputReader.LoadAsync((uint)contentInputStream.Size);
            await protectedReader.LoadAsync((uint)protectedContentStream.Size);

            var inputBuffer = inputReader.ReadBuffer((uint)contentInputStream.Size);
            var protectedBuffer = protectedReader.ReadBuffer((uint)protectedContentStream.Size);

            if (!CryptographicBuffer.Compare(inputBuffer, protectedBuffer))
            {
               return protectedBuffer.ToArray();
            }
            else
            {
                return null;
            }
        }

        public async Task<byte[]> Decrypt(byte[] encryptedBytes)
        {
            var provider = new DataProtectionProvider();

            var encryptedContentBuffer = CryptographicBuffer.CreateFromByteArray(encryptedBytes);
            var contentInputStream = new InMemoryRandomAccessStream();
            var unprotectedContentStream = new InMemoryRandomAccessStream();

            IOutputStream outputStream = contentInputStream.GetOutputStreamAt(0);
            var dataWriter = new DataWriter(outputStream);
            dataWriter.WriteBuffer(encryptedContentBuffer);
            await dataWriter.StoreAsync();
            await dataWriter.FlushAsync();

            IInputStream decodingInputStream = contentInputStream.GetInputStreamAt(0);

            IOutputStream protectedOutputStream = unprotectedContentStream.GetOutputStreamAt(0);
            await provider.UnprotectStreamAsync(decodingInputStream, protectedOutputStream);
            await protectedOutputStream.FlushAsync();

            DataReader reader2 = new DataReader(unprotectedContentStream.GetInputStreamAt(0));
            await reader2.LoadAsync((uint)unprotectedContentStream.Size);
            IBuffer unprotectedBuffer = reader2.ReadBuffer((uint)unprotectedContentStream.Size);

            return unprotectedBuffer.ToArray();
        }
    }   
}

Last but not least, we have also an implementation for Windows applications. It is using the DataProtection API, which does handle all that key stuff and let’s us focus on the encryption itself. As the API is asynchronously, I am using .GetAwaiter().GetResult()Task extensions to make it compatible with Observable.Start.

Conclusion

Using the implementations above paired with our instance helper makes it easy to protect data in our apps. With all those data breach scandals and law changes around, this is one possible way secure way to handle sensitive data, as we do not have hardcoded values or any user interaction involved.

For better understanding of all that code, I made a sample project available that has all the referenced and mentioned classes implemented. Feel free to fork it and play with it (or even give me some feedback). For using the implementations, please refer to my post about common usages I wrote a few days ago. The only difference is that you would use SecretLocalMachineCacheinstead of LocalMachineCache for sensitive data.

As always, I hope this post is helpful for some of you.

Until the next post, happy coding!


P.S. Feel free to download my official app for msicc.net, which – of course – uses the implementations above:
iOS Android Windows 10

Posted by msicc in Android, Dev Stories, iOS, Windows, Xamarin, 3 comments
Using the built-in UWP data protection for data encryption

Using the built-in UWP data protection for data encryption

DataProtectionProvider

The UWP has an easy-to-use helper class to perform encryption tasks on data. Before you can use the DataProtectionProvider class, you have to decide on which level you want the encryption to happen. The level is derived from the protection descriptor, which derives the encryption material internally from the user data specified. For non-enterprise apps, you can choose between four levels (passed in as protectionDescriptor parameter with the constructor):

  • “LOCAL=user”
  • “LOCAL=machine”
  • “WEBCREDENTIALS=MyPasswordName”
  • “WEBCREDENTIALS=MyPasswordName,myweb.com”

If you want the encryption to be only for the currently logged-in user, use the first provider, for a machine-wide implementation use the second one in the list above. The providers for web credentials are intended to be used within the browser/web view. Personally, I never used them, because of this, this post will focus on local implementations.

Encrypting data

There are two ways to encrypt data with the DataProtectionProvider. You can encrypt a s string or a stream. My implementation uses always the stream implementation. This way I can encrypt whole files if needed and simple strings with the same method. Here is the encryption Task:

public async Task<byte[]> Encrypt(byte[] data)
{
    var provider = new DataProtectionProvider(UseForAllUsers ? _localMachineDescriptor : _localUserDescriptor);

    var contentBuffer = CryptographicBuffer.CreateFromByteArray(data);
    var contentInputStream = new InMemoryRandomAccessStream();
    var protectedContentStream = new InMemoryRandomAccessStream();

    //storing data in the stream
    IOutputStream outputStream = contentInputStream.GetOutputStreamAt(0);
    var dataWriter = new DataWriter(outputStream);
    dataWriter.WriteBuffer(contentBuffer);
    await dataWriter.StoreAsync();
    await dataWriter.FlushAsync();

    //reopening in input mode
    IInputStream encodingInputStream = contentInputStream.GetInputStreamAt(0);

    IOutputStream protectedOutputStream = protectedContentStream.GetOutputStreamAt(0);
    await provider.ProtectStreamAsync(encodingInputStream, protectedOutputStream);
    await protectedOutputStream.FlushAsync();

    //verify that encryption happened
    var inputReader = new DataReader(contentInputStream.GetInputStreamAt(0));
    var protectedReader = new DataReader(protectedContentStream.GetInputStreamAt(0));

    await inputReader.LoadAsync((uint)contentInputStream.Size);
    await protectedReader.LoadAsync((uint)protectedContentStream.Size);

    var inputBuffer = inputReader.ReadBuffer((uint)contentInputStream.Size);
    var protectedBuffer = protectedReader.ReadBuffer((uint)protectedContentStream.Size);

    if (!CryptographicBuffer.Compare(inputBuffer, protectedBuffer))
    {
       return protectedBuffer.ToArray();
    }
    else
    {
        return null;
    }
}

First, I am defining the provider based on a boolean property. The passed in byte array is then converted to an IBuffer, which in turn makes it easier to pass it to the InMemoryRandomAccessStream that we will encrypt. After writing the data into an this stream, we need to reopen the stream in input mode, which allows us to call the ProtectStreamAsyncmethod. By comparing the both streams, we are finally verifying that encryption happened.

Decrypting data

Of course it is very likely we want to decrypt data we encrypted with the above method at some point. We are basically reversing the process above with the following Task:

public async Task<byte[]> Decrypt(byte[] encryptedBytes)
{
    var provider = new DataProtectionProvider();

    var encryptedContentBuffer = CryptographicBuffer.CreateFromByteArray(encryptedBytes);
    var contentInputStream = new InMemoryRandomAccessStream();
    var unprotectedContentStream = new InMemoryRandomAccessStream();

    IOutputStream outputStream = contentInputStream.GetOutputStreamAt(0);
    var dataWriter = new DataWriter(outputStream);
    dataWriter.WriteBuffer(encryptedContentBuffer);
    await dataWriter.StoreAsync();
    await dataWriter.FlushAsync();

    IInputStream decodingInputStream = contentInputStream.GetInputStreamAt(0);

    IOutputStream protectedOutputStream = unprotectedContentStream.GetOutputStreamAt(0);
    await provider.UnprotectStreamAsync(decodingInputStream, protectedOutputStream);
    await protectedOutputStream.FlushAsync();

    DataReader reader2 = new DataReader(unprotectedContentStream.GetInputStreamAt(0));
    await reader2.LoadAsync((uint)unprotectedContentStream.Size);
    IBuffer unprotectedBuffer = reader2.ReadBuffer((uint)unprotectedContentStream.Size);

    return unprotectedBuffer.ToArray();
}

For decryption, we do not need to specify the protection descriptor again. The OS will find the right one on its own. While I have read that this sometimes makes problems, I haven’t got any problems until now. Once again, we are creating InMemoryRandomAccessStreaminstances to perform decryption on it. Finally, after we unprotected our data with the UnProtectStreamAsyncmethod, we are reading the data back into a byte array.

Usage

The usage of these two helpers is once again pretty straight forward. Let’s have a look at data encryption:

var textToCrypt = "this is just a plain test text that will be encrypted and decrypted";

//async method
var encrypted = await Encrypt(Encoding.UTF8.GetBytes(textToCrypt));
//non async method:
//var encrypted = Encrypt(Encoding.UTF8.GetBytes(textToCrypt)).GetAwaiter().GetResult();

Decryption of encoded data is done like this:

//async method
var decrypted = await Decrypt(encrypted);

//non async method
//var decrypted = Decrypt(encrypted).GetAwaiter().GetResult();

//getting back the string:
var decryptedString = Encoding.UTF8.GetString(decrypted);

Conclusion

Using the built in DataProtection API makes it very easy to protect sensitive data within an UWP app. You can use it on both a string or a stream, it is up to you if you follow my way to use always a stream or make it dependent on your scenario. If you want to have more control over the key size, the encryption method used or any other detail, I wrote a post about doing everything on my own a while back (find it here). Even if it is from 2015 and based on WINRT (Win8.1), the APIs are still alive and the post should help you to get started.

You can have a look on Android encryption here, while you’ll find the iOS post here.

As always, I hope this post will be helpful for some of you. If you have any questions/feedback, feel free to comment below or connect with me via my social networks.

Happy coding, everyone!

Posted by msicc in Dev Stories, Windows, Xamarin, 3 comments