AtomicPay Azure KeyVault title image

Handle AtomicPay’s webhook with Microsoft Azure (Part 2/3) – invoice verification with Azure KeyVault

In the first post of this series, we learned how to handle the payload of AtomicPay's webhook with Azure. This post is about invoice verification and storing your API keys in the most secure way on Azure using KeyVault.

Series overview

  1. Handle the incoming notification with an Azure Function (first post)
  2. Verify the invoice state within the Azure Function, but store the API credentials in the most secure way (this post)
  3. Send a push notification via Azure Notificationhub to all devices that have linked a merchant’s account to it (third post [coming soon])

Storing credentials securely

When we consume web services, we need to authenticate our applications against them/their API. In the past, I always saw (and in fact, I also made) samples that do ignore the security of those credentials and provide them in code, leaving additional research (if you are new to that topic) and making the samples incomplete. As the goal of this post is to verify the state of a received invoice against the AtomicPay API, the first step is to provide a secure mechanism for storing our API credentials on Azure.

Get your AtomicPay API keys

If you haven’t signed up for an AtomicPay account, you should probably do it now. Once you have logged in, open the menu and select ‘API Integration‘:

AtomicPay menu select API Integration

On this page, you find your pre-generated API-Keys. Should your keys be compromised, you will be able to regenerate your keys here as well:

AtomicPay API Integration page

Introducing Azure KeyVault

According to the Azure KeyVault documentation, it is

a tool for securely storing and accessing secrets. A secret is anything that you want to tightly control access to, such as API keys, passwords, or certificates. A Vault is logical group of secrets.

As we are dealing with a public/private key credential combo, Azure KeyVault fits our goal to securely store the credentials perfectly. Since November last year, Azure Functions are able to use the KeyVault via their AppSettings. This is what the first half of this post is about.

Creating a new KeyVault

Login to the Azure Portal and go to the Marketplace. Search for ‘Key Vault‘ there and select it from the results:

Azure Marketplace search for Key Vault

You will be prompted with the creation menu. Give it a unique name and select your existing resource group (which will make sure we are in the correct location automatically). Once done, click on the create button:

Azure create new key vault menu

It will take a minute or two until the deployment is done. From the notification, you’ll get a direct link to the resource:

In the overview menu, select ‘Secrets’, where we will store our credentials:

Azure KeyVault menu - select Secrets

If you are wondering why we are using the ‘Secrets‘ option over ‘Keys‘ – the keys are already generated by AtomicPay, and the import function wants a backup file. I did not have a deeper look into this option as the ‘Secrets‘ option offers all I need.

The next step is to add a secret entry for AtomicPay’s account id, public and private key:

Azure KeyVault add secret

Once you have added the Application ID and your keys into ‘Secrets‘, click on ‘Overview‘. On the right-hand side, you’ll see an entry called ‘DNS Name’. Hover with the mouse to reveal the copy button and copy it:

Azure KeyVault Url Copy

Now go to your Azure Function and select ‘Application settings‘. Scroll a bit down and add a new setting. You can name it whatever you want, I just used ‘KeyVaultUri‘. Paste the url you have copied earlier into the value field. Do not forget to hit the ‘Save‘-button after that:

Azure Function - Application settings

Now we are just one step away of being able to use the KeyVault in our code. Go back to ‘Overview‘ on your Function and click on the ‘Platform features‘ tab. Select ‘Identity‘ there:

Azure Function select Identity

We need to enable the ‘System assigned‘ managed identity feature to allow the Function to interact with the Azure KeyVault from our code. This will add our Function to an Azure AD instance that handles the access rights for us:

Azure function enable System assigned identity

Now we have everything in place to use the KeyVault to retrieve the API credentials we need for invoice verification.

Retrieving credentials in our code

Before we start to rewrite our function code, we need to install two NuGet-Packages into our Function project. Right click on the project and select ‘Manage NuGet Packages…‘. Search for these to packages and install them:

Refactoring the initial code

Whenever possible, we should take the chance to refactor our code. I have done so on adding the authentication layer for this sample. First, we will be moving the code to get the payload off the webhook into its own method:

        private static async Task<WebhookInvoiceInfo> GetPaymentPayload(HttpRequestMessage requestMessage)
        {
            _traceWriter.Info("trying to get payload object from request...");
            WebhookInvoiceInfo result = null;
            _jsonSerializerSettings = new JsonSerializerSettings()
            {
                MetadataPropertyHandling = MetadataPropertyHandling.Ignore,
                DateParseHandling = DateParseHandling.None,
                Converters ={

                        new IsoDateTimeConverter { DateTimeStyles = DateTimeStyles.AssumeUniversal },
                        StringToLongConverter.Instance,
                        StringToDecimalConverter.Instance,
                        StringToInvoiceStatusConverter.Instance,
                        StringToInvoiceStatusExceptionConverter.Instance
                }
            };

            _jsonSerializer = JsonSerializer.Create(_jsonSerializerSettings);

            using (var stream = await requestMessage.Content.ReadAsStreamAsync())
            {
                using (var reader = new StreamReader(stream))
                {
                    using (var jsonReader = new JsonTextReader(reader))
                    {
                        result = _jsonSerializer.Deserialize<WebhookInvoiceInfo>(jsonReader);
                    }
                }
            }

            return result;
        }

Next, we need are going to write another method to retrieve the credentials from the Azure KeyVault and initialize the AtomicPay SDK properly:

        private static async Task<bool> InitAtomicPay()
        {
            bool isAuthenticated = false;

            //initialize Azure Service Token Provider and authenticate this function against the KeyVault
            var serviceTokenProvider = new AzureServiceTokenProvider();
            var keyVaultClient = new KeyVaultClient(new KeyVaultClient.AuthenticationCallback(serviceTokenProvider.KeyVaultTokenCallback));

            //getting the key vault url
            var vaultBaseUrl = ConfigurationManager.AppSettings["KeyVaultUri"];

            //retrieving the appId and secrets
            var accId = await keyVaultClient.GetSecretAsync(vaultBaseUrl, "atomicpay-accId");
            var accPBK = await keyVaultClient.GetSecretAsync(vaultBaseUrl, "atomicpay-accPBK");
            var accPVK = await keyVaultClient.GetSecretAsync(vaultBaseUrl, "atomicpay-accPVK");

            //initialize AtomicPay SDK and return the result
            await AtomicPay.Config.Current.Init(accId.Value, accPBK.Value, accPVK.Value);

            if (!AtomicPay.Config.Current.IsInitialized)
            {
                isAuthenticated = false;
                _traceWriter.Info("failed to authenticate with AtomicPay");
            }
            else
            {
                isAuthenticated = true;
                _traceWriter.Info("successfully authenticated with AtomicPay.");
            }

            return isAuthenticated;
        }

Now that we authenticated against the API, we are finally able to verify the state of the invoice sent by the webhook. Let’s put everything together:

        //renamed this function (not particullary necessary)
        [FunctionName("InvoiceVerifier")]
        public static async Task<HttpResponseMessage> Run([HttpTrigger(AuthorizationLevel.Function, "post", Route = null)]HttpRequestMessage req, TraceWriter log)
        {
            //enable other methods to write to log
            _traceWriter = log;
            _traceWriter.Info($"arrived at function trigger for 'InvoiceVerifier'...");

            //retrieving the payload
            var payload = await GetPaymentPayload(req);

            //if payload is null, there is something wrong
            if (payload != null)
            {
                //authenticate the Function against AtomicPay
                var isAuthenticated = await InitAtomicPay();
                if (isAuthenticated)
                {
                    AtomicPay.Entity.InvoiceInfoDetails invoiceInfoDetails = null;

                    _traceWriter.Info($"trying to verify invoice id {payload.InvoiceId} ...");

                    //verifying the invoice 
                    using (var atomicPayClient = new AtomicPay.AtomicPayClient())
                    {
                        var invoiceObj = await atomicPayClient.GetInvoiceByIdAsync(payload?.InvoiceId);

                        if (invoiceObj == null)
                            return req.CreateResponse(HttpStatusCode.BadRequest, $"there was an error getting invoice with id {payload?.InvoiceId}. Response was null");

                        if (invoiceObj.IsError)
                            return req.CreateResponse(HttpStatusCode.BadRequest, $"there was an error getting invoice with id {payload?.InvoiceId}. Message from AtomicPay: {invoiceObj.Value.Message}");
                        else
                            invoiceInfoDetails = invoiceObj.Value?.Result?.FirstOrDefault();
                    }

                    //this will be the point where we will trigger the push notification in the last part
                    switch (invoiceInfoDetails.Status)
                    {
                        case AtomicPay.Entity.InvoiceStatus.Paid:
                        case AtomicPay.Entity.InvoiceStatus.PaidAfterExpiry:
                        case AtomicPay.Entity.InvoiceStatus.Overpaid:
                        case AtomicPay.Entity.InvoiceStatus.Complete:
                            log.Info($"invoice with id {invoiceInfoDetails.InvoiceId} is paid");
                            break;
                        default:
                            log.Info($"invoice with id {invoiceInfoDetails.InvoiceId} is not yet paid");
                            break;
                    }
                }
                else
                {
                    req.CreateResponse(HttpStatusCode.Unauthorized, "failed to authenticate with AtomicPay");
                }
            }
            else
                req.CreateResponse(HttpStatusCode.BadRequest, "there was an error getting the payload from request body");

            return req.CreateResponse(HttpStatusCode.OK, $"verified received invoice with id: '{payload?.InvoiceId}'");
        }

Save the changes to your code. After that, right click on the project and hit ‘Publish’ to update the function on Azure. Once you have published the updated code, you should be able to test your Function once again with Postman and receive a result like this:

Postman response from updated function

Conclusion

As you can see, Microsoft Azure provides a convenient way to store credentials and use them in your Azure Functions. This approach makes the whole process a whole lot more secure. This post also showed the ease of implementation of the AtomicPay .NET SDK.

In the third and last post of this series, we will connect our function to an Azure Notificationhub for sending push notifications to all devices that have registered with a certain merchant account. As always, I hope also this post was helpful for some of you.

Until the next post, happy coding, everyone!

Title image credit

Join the discussion right now!

This site uses Akismet to reduce spam. Learn how your comment data is processed.